Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7-lektsii.doc
Скачиваний:
21
Добавлен:
18.04.2015
Размер:
766.46 Кб
Скачать

Лекция 7. Основные задачи механики сплошных сред в бурении

Задачи гидромеханики в бурении

§ 1. Базовые задачи гидродинамики при промывке и цементировании скважин

Основные задачи гидроди­намики в бурении основаны на общих уравнениях и задачах гидромеханики, в первую очередь на уравнениях состоя­ния идеальных и реальных жидкостей, которыми чаще всего пользуются при расчетах.

При промывке и цементировании скважин простейшими типовыми задачами гидромеханики, допускающими аналитическое решение, являются задачи о течении жидкости в плоской щели (между двумя параллельными бесконечными пластинками), в круглой трубе и в кольцевом пространстве между двумя соосными цилиндрами, если исходить из следующих условий:

  1. жидкость несжимаемая (ρ=соnst);

  2. течение установившееся ;

  3. все частицы жидкости движутся параллельно твердым стенкам канала, т. е. при совмещении координатной оси Оz с направлением течения, отличной от нуля будет лишь одна составляющая vz cкорости ;

  4. концевые эффекты пренебрежимо малы, т. е. картина течения в любом сечении, нормальному к потоку, идентична , что справедливо для сечений, удаленных от концов канала на расстояние равное 0,035dRe, где d – характерный размер поперечного сечения: для щели – расстояние между плоскостями; для труб – ее диаметр; для кольцевого пространства – удвоенный зазор;

  5. вдоль потока действует постоянный градиент давления равный – Δp/L, где Δp>0 – полный перепад давления между сечениями, находящимися на расстоянии L друг от друга;

  6. на жидкость действует объемная сила обусловленная только силой тяжести, где принимают знак (+), если жидкость движется вниз, и знак (-) – вверх, когда положительное направление осиОz совпадает с направлением движения.

Если, кроме того, учесть, что скорости частиц жидкости в рассматриваемых каналах симметричны относительно плоскости yz – для щели и относительно оси Оz – для круглой трубы и кольцевого пространства, то vz = v(x) и vz = v(r) соответственно.

Поэтому, согласно соотношениям Коши (15) и уравнениям состояния (14) при течении жидкости в щели, отличными от нуля будут лишь одна скорость деформации и одно напряжение сдвига:

(3.1)

Аналогично для течения в трубе и в кольцевом пространстве:

(3.2)

Система дифференциальных уравнений (11) — (14) суще­ственно упрощается: первые два уравнения движения и уравнение неразрывности удовлетворяются тождественно, а третье уравнение системы (14) принимает вид —

при течении в плоской щели

при течении в трубе и кольцевом пространстве

где — гидродинамические потери давления, обуслов­ленные только движением жидкости независимо от направления течения.

Интегрируя эти уравнения при условиях σxz = 0 при х = 0 для щели и σrz = 0 при r = 0 для круглой трубы, получим соответ­ственно

(3.3)

(3.4)

где постоянная интегрирования только при течении жидкости в кольцевом пространстве.

Следует напомнить, что соотношения (3.1) — (3.4) справедли­вы при ламинарном течении любой (ньютоновской и неньютонов­ской) жидкости. Сохраняются они и при турбулентном течении, если под величинами понимать усредненные повремени значения .

Ниже приводятся аналитические решений граничных задач жидкости в щели и в кольцевом пространстве в зависимости от характера течения и реологических свойств жидкости. Решения для круглой трубы получаются простым предельным переходом из решений для кольцевого пространства.

Определяются также основные интегральные гидродинамические характеристики потока:

объемный расход

средняя скорость

(3.5)

коэффициент сопротивления

где - соответственно площади поперечного сечения и боковой смоченной поверхности канала; f = τ/W – коэффициент трения Фаннинга; -касательное напряжение у поверхности канала; - кинетическая энергия единицы объема жидкости.

Определение объемного расхода Q по заданному перепаду давления ΔР обычно называют прямой задачей гидродинамики, а определение перепада давления ΔР по заданному расходу Q – обратной задачей.

В этом отношении все приведенные ниже результаты относятся к решениям прямой граничной задачи, а полученные зависимости пользуются для вычисления гидравлических потерь. Для этой цели определяющим является закон сопротивления, т. е. зависимость коэффициента λ от характеристик течения.

Установление экспериментального закона сопротивления – задача практической гидродинамики (гидравлики), где приведенные ниже аналитические зависимости основополагающи.

Если λ не зависит от ΔР, то из третьей формулы (22) следует известный закон Дарси-Вейсбаха, широко используемый для вычисления гидравлических потерь в цилиндрических каналах при турбулентном режиме течения:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]