Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клетка.doc
Скачиваний:
63
Добавлен:
18.04.2015
Размер:
275.97 Кб
Скачать
  1. Особенности строения клеток прокариот и эукариот.

По особенностям организации выделяют клетки прокариотического и эукариотического типов. К царству Прокариот относят царство Бактерий, к царству эукариот – все остальные царства: Грибы, Растения, Животные. Эволюционно прокариоты более ранние, чем эукариоты, они возникли в Архейскую эру (около 3*109лет назад). Первые эукариоты появились около 2*109лет назад, возможно от прокариот. Прокариоты – доядерные – не имеют морфологически обособленного ядра, т.к. ядерный материал не отграничен от цитоплазмы ядерной мембраной. Эукариоты – ядерные – генетический материал окружен ядерной оболочкой.  Типичной прокариотической клеткой является бактериальные клетка: снаружи окружена клеточной стенкой особого химического состава, под клеточной стенкой – плазматическая мембрана, окружающая цитоплазму, в которой находится нуклеотид – аналог ядра. Сравнительная характеристика эукариот и прокариот:

Признак

Прокариоты

Эукариоты

1. Величина клетки

От 0,5 до 5 мкм

До 40 мкм

Оболочка клетки

Есть, отличная по химическому строению от эукариот. В стенке – пептидогликан.

Есть, различны у растений и животных, нет пептидогликана 

Плазматическая мембрана

Есть

Есть

Мезосомы

Есть

Есть

Цитоплазма

Есть, движение отсутствует

Есть, движение есть

Мембранные органеллы-ЭПС, аппарат Гольджи, хлоропласты, митохондрии, лизосомы, пероксисомы, вакуоли.

Нет

Есть

Ядерная мембрана, наличие ядра

Нет

Есть

Организация генетического материала

1 молекула ДНК, кольцевая, находится в нуклеиде, не окружена ядерной мембраной; истинного ядра и хромосом нет

Линейная ДНК, связанная белками – гистонами и РНК, образуют хромосомы, находящиеся в ядре.

Внехромасомные факторы наследственности (цитоплазматические)

Есть

Есть

Рибосомы в цитоплазме

70 S

80 S

Включения

Есть

Есть

Цитоскелет

Нет

Есть

Жгутики

Простые микротрубочки отсутствуют, напоминают 1 из мкротрубочек оруженной плазматической мембраной

Сложные, с микротрубочками 2*9+2, окружены плазматической мембраной

Способность к активизации движений

Есть

Есть

Способность к эндоцитозу

Нет

Есть

Размножение

Бинарное деление

Митоз, мейоз 

Скорость размножения

1 деление в 20 минут

1 деление в несколько минут 

Спорообразование

Для сохранения вида – 1 спора 

Для размножения много спор

Дыхание

Бактерии – плазматической мембраной. Цианобактерии – в цитоплазматических мембранах

В митохондриях

Фотосинтез

В мембранах, не имеющих специфической упаковки; хлоропластов нет

В сложноустроенных хлоропластах с гранулами

Способность к фиксации

Есть у некоторых

Неспособны

6. Основные структурные компоненты клетки Цитоплазма – представляет собой содержимое клетки, исключая ядерный аппарат (ядро). В состав цитоплазмы входит гиалоплазма, система эндомембран (мембранные органоиды) и не органоиды, в некоторых клетках цитоплазма содержит цитоплазматические включения. Гиалоплазма – является желеподобным веществом. В ней локализуются и функционируют все органоиды клетки. Гиалоплазма содержит множество ионов и низкомолекулярных белков (метаболитов) и высокомолекулярных белков. Этот компонент является микросредой, которая обеспечивает и регулирует процессы, протекающие в цитоплазме. Состав: 90% - вода, 10% - белки и водные растворы органических и неорганических веществ клетки. Система эндомембран – состоит из мембранных органоидов с их содержимым. К этим органоидам относятся эндоплазматическая сеть, комплекс Гольджи, микротельца и митохондрии. 7. Поверхностный аппарат клетки. Поверхностный аппарат клетки – является универсальной субсистемой, имеется у всех клеток. Поверхностный аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой. В составе поверхностного аппарата клетки выделяют 3 компонента: 1. Плазматическую мембрану, или плазмолемму 2. Надмембранный комплекс, или гликокаликс 3. Субмембранный комплекс или субмембранный опорно-сократительный аппарат. Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран. Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой. В состав надмембранного комплекса включают: 1. Углеводные части гликолипидов и гликопротеидов 2. Периферические мембранные белки, расположенные на наружней части билипидного слоя 3. Интегральные и полуинтегральные белки, имеющие наружную зону, выступающую над билипидном слоем. 4. Специфические углеводы, не связанные химически с компонентами мембраны, локализованные над билипидном слоем. 5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему. Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система.  Опорно-сократительная система состоит из:

  • Микрофибрилл, или микрофиламентов

  • Скелетных фибрилл, или промежуточных филаментов

  • Микротрубочек

Микрофиблиллы - нитивидные структуры, состоящие из: 1. Сократительного белка актина 2. Миозина Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл.  В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам. Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток.  Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и  -тубулина. Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты, которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов. В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек. Наиболее мощным центром организации микротрубочек являются центриоли. В инициации полимеризации микротрубочек играет белок -  -фактор