Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цитология. Лекция №1.doc
Скачиваний:
166
Добавлен:
14.04.2015
Размер:
2.78 Mб
Скачать

II. Цитоплазма. Органеллы. Включения.

Органеллы – постоянно присутствующие в цитоплазме структуры, имеющие определенное строение и специализированные на выполнении определенных (специфических) функций в клетке.

Органеллы подразделяются на:

  • органеллы общего значения

  • специальные органеллы.

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся:

  • митохондрии,

  • рибосомы

  • эндоплазматическая сеть (ЭПС),

  • комплекс Гольджи

  • лизосомы

  • пероксисомы,

  • клеточный центр

  • компоненты цитоскелета.

  • Специальные органеллы содержатся лишь в некоторых специализированных клетках, где они обеспечивают выполнение специальных функций.

К специальным органеллам относят реснички, жгутики, миофибриллы, акросома. Все специальные органеллы образуются при развитии клетки как производные органелл общего значения, так, например, акросома спермия является производным комплекса Гольджи, реснички и жгутики – микротрубочек цитоскелета и т.д

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяются также на

  • мембранные и

  • немембранные.

Мембранные органеллы: митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы;

Немембранные органеллы: рибосомы, клеточный центр, компоненты цитоскелета, микроворсинки, реснички, жгутики.

Элементарная биологическая мембрана, входящая в состав клеточных органелл, по своему строению представляет собой бислой липидов со встроенными белками и сходна со строением плазмолеммы, но не идентична ей. Толщина мембран внутриклеточных органелл несколько меньше (6-7,5 нм) в сравнении с плазмолеммой. Мембраны различных органелл существенно различаются по своим функциональным свойствам, благодаря присутствию разных структурных белков; белков, формирующих трансмембранные каналы или насосы, ферментов, рецепторов, а также липидов.

Благодаря мембранам внутри клетки выделяются отделы – компартменты – со своей особой биохимической средой, что позволяет обособить протекание несовместимых процессов внутри клетки.

Синтетический аппарат клеток

Синтетический аппарат включает органеллы, участвующие в синтезе различных веществ. К таким органеллам относятся:

  • рибосомы,

  • эндоплазматическая сеть

  • комплекс Гольджи.

Деятельность синтетического аппарата клетки контролируется активностью генов, локализованных в ядре.

Рибосомы – мелкие, плотные немембранные органеллы, диаметром 15-30 нм. Функция рибосом – синтез белка путем соединения аминокислот в полипептидные цепочки. Каждая рибосома состоит из двух субъединиц: большой и малой. Субъединицы образованы рибосомальными РНК (рРНК) и особыми белками (около 80 видов). Соотношение рРНК и белков равно 1:1.

Субъединицы рибосом собираются в ядре из рРНК, которая образуется в ядрышке, и белков, которые синтезируются в цитоплазме и поступают в ядро. Затем субъединицы рибосом через ядерные поры перемещаются в цитоплазму, где они участвуют в синтезе белка.

Рибосомы могут встречаться в цитоплазме как отдельные гранулы (функционально неактивные, не транслирующие рибосомы), так и в форме скоплений – полирибосом (полисом) – активные рибосомы. Отдельные рибосомы полисом удерживаются вместе нитью информационной РНК. Информация, переносимая иРНК, кодирует последовательность аминокислот в белке соответствующей последовательностью нуклеотидов. Рибосомы транслируют эту генетическую информацию в последовательность аминокислот в ходе белкового синтеза.

Полисомы могут свободно располагаться в гиалоплазме, или быть прикрепленными к мембранам эндоплазматической сети (ЭПС) (Рис.3). При этом белки, которые синтезируются на свободных полисомах, остаются в гиалоплазме и далее используются самой клеткой. Полисомы, которые своими большими субъединицами прикреплены к мембранам ЭПС, синтезируют белки, накапливающиеся в просвете цистерн ЭПС.

В дальнейшем эти белки либо выводятся из клетки (например, пищеварительные ферменты, гормоны), либо остаются в клетке в структурах, ограниченных мембраной (например, лизосомы с набором лизосомальных ферментов)

Рис.3.

Рибосомы, в связи с наличием рРНК, интенсивно окрашиваются основными красителями (гематоксилин, метиленовый синий). Присутствие значительного числа рибосом в цитоплазме клеток, активно синтезирующих белок, придает ей базофилию на светооптическом уровне.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС)

Эндоплазматическая сеть (ЭПС) – система уплощенных, трубчатых, везикулярных структур, ограниченных мембраной. Название обусловлено тем, что её многочисленные элементы (цистерны, трубочки, пузырьки) образуют единую, непрерывную трехмерную сеть.

Степень развития ЭПС варьирует в различных клетках, и даже в разных участках одной и той же клетки, и зависит от функциональной активности клеток.

Различают две разновидности ЭПС (рис.4):

  • гранулярную ЭПС (грЭПС) и

  • гладкую, или агранулярную ЭПС (аЭПС), которые связаны между собой в переходной области.

Рис.4.

Гранулярная ЭПС образована мембранными трубочками и уплощенными цистернами, на наружной (обращенной в сторону гиалоплазмы) поверхности которых расположены рибосомы. Прикрепление рибосом происходит благодаря интегральным рецепторным белкам мембран грЭПС – рибофоринам. Эти же белки формируют гидрофобные каналы в мембране грЭПС для проникновения синтезированной белковой цепочки в просвет цистерн.

Основная функция грЭПС: сегрегация (отделение) вновь синтезированных белковых молекул от гиалоплазмы.

Таким образом, грЭПС обеспечивает:

  • биосинтез белков, предназначенных для экспорта из клетки;

  • биосинтез ферментов лизосом

  • биосинтез мембранных белков.

Белковые молекулы накапливаются внутри просвета цистерн, приобретают вторичную и третичную структуру, а также подвергаются начальным посттрансляционным изменениям – гидроксилированию, сульфатированию, фосфорилированию и гликозилированию (присоединение к белкам олигосахаридов с образованием гликопротеинов).

ГрЭПС присутствует во всех клетках, но в наибольшей степени эта сеть развита в клетках, специализирующихся на белковом синтезе, таких как, клетки поджелудочной железы, вырабатывающих пищеварительные ферменты; фибробласты соединительной ткани, синтезирующих коллаген; плазматические клетки, продуцирующих иммуноглобулины. В этих клетках элементы грЭПС образуют параллельные скопления цистерн; при этом просвет цистерн часто расширен. Для всех этих клеток характерна выраженная базофилия цитоплазмы в области расположения элементов грЭПС.

Агранулярная ЭПС представляет собой трехмерную сеть мембранных трубочек, канальцев, пузырьков, на поверхности которых рибосомы отсутствуют.

Функции агрЭПС

  • участие в синтезе липидов, в том числе мембранных, холестерина и стероидов;

  • метаболизм гликогена;

  • нейтрализация и детоксикация эндогенных и экзогенных токсичных веществ;

  • накопление ионов Са (особенно в специализированной виде аЭПС – саркоплазматической сети мышечных клеток).

АгрЭПС хорошо развита:

  • в клетках, активно продуцирующих стероидные гормоны – клетки коркового вещества надпочечников, интерстициальные гландулоциты яичка, клетки желтого тела яичника.

  • в клетках печени, где её ферменты участвуют в метаболизме гликогена, а также в процессах, которые обеспечивают нейтрализацию и детоксикацию эндогенных биологически активных веществ (гормонов) и экзогенных вредных веществ (алкоголя, лекарственных веществ и др.).

КОМПЛЕКС ГОЛЬДЖИ – мембранная органелла, образованная тремя основными элементами (рис.5): скоплениями уплощенных цистерн, мелкими (транспортными) пузырьками и конденсирующими вакуолями.

Комплекс этих элементов называется диктиосомой.

Рис.5.

Цистерны имеют вид изогнутых дисков с несколько расширенными периферическими отделами. Цистерны образуют группу в виде стопки из 3-30 элементов. От периферических расширений цистерн отщепляются пузырьки и вакуоли.

Пузырьки – мелкие (диаметр 40-80 нм), окруженные мембраной сферические элементы с содержимым умеренной электронной плотности. Вакуоли – крупные (диаметр 0.1-1.0 мкм), сферические образования, отделяющиеся от зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Вакуоли содержат секреторный продукт, находящийся в процессе конденсации.

Комплекс Гольджи обладает полярностью: в каждой диктиосоме выделяют две поверхности:

  • формирующаяся (незрелая, или цис-поверхность) и

  • зрелая (транс-поверхность).

Цис-поверхность выпуклой формы обращена в сторону ЭПС и связана с ней системой мелких транспортных пузырьков, отщепляющих от ЭПС. Таким образом, белки в транспортных пузырьках проникают через цис-поверхность.

Каждая группа медиальных цистерн внутри стопки отличается особым составом ферментов, и для каждой группы характерны свои реакции обработки белков. Обработанные вещества выходят в вакуолях с вогнутой транс-поверхности.

Функции комплекса Гольджи

  • синтез полисахаридов и гликопротеинов (гликокаликса, слизи);

  • обработка белковых молекул (терминальное гликозилирование – включение углеводных компонентов; фосфорилирование – добавление фосфатных групп; ацилирование – добавление жирных кислот; сульфатирование – добавление сульфатных остатков и т.д.;

  • сортировка белков на транс-поверхности;

  • упаковка секреторных продуктов в мембранные структуры

Рис.6.

Секреторные продукты, обработанные в комплексе Гольджи, оказываются далее в (рис.6):

  • секреторных гранулах, которые выделяются путем экзоцитоза;

  • первичных лизосомах;

  • окаймленных пузырьках, в которых интегральные белки транспортируются в плазмолемму.

МИТОХОНДРИИ – мембранные органеллы, присутствующих во всех эукариотических клетках, и представляющие собой энергетический аппарат клетки.

Основные функции митохондрий:

  • обеспечение клетки легко доступной энергией, которая образуется благодаря окислению метаболитов, и запасается частично в виде высоко-энергетических фосфатных связей АТФ;

  • участие в биосинтезе стероидов;

  • участие в окислении жирных кислот.

Митохондрии могут иметь эллиптическую, палочковидную или нитевидную форму. Их размеры составляют 0.2-2 мкм в ширину и до 10 мкм в длину. Число митохондрий в разных клетках и их распределение в пределах клетки варьирует.

Много митохондрий встречается в клетках с активным метаболизмом, требующим высоких энергетических затрат: кардиомиоцитах, клетках почечных канальцев, париетальных клетках желез дна желудка и т.д.

В цитоплазме митохондрии могут распределяться диффузно, но имеют тенденцию аккумулироваться в участках максимального потребления энергии, например в апикальной части реснитчатых клеток, в связующем отделе сперматозоидов, или вблизи ионных насосов (зона базальной исчерченности в проксимальных канальцах почек, в исчерченных протоках слюнных желез и др.).

Строение митохондрий

Каждая митохондрия состоит изнаружной и внутренней мембран, между которыми находится межмембранное пространство (Рис.7). Внутренняя мембрана образует складки - кристы, обращенные внутрь митохондрии. Пространство, ограниченное внутренней мембраной, заполнено митохондриальным матриксом, - мелкозернистым материалом различной электронной плотности.

Рис.7.

Наружная мембрана митохондрий содержит много молекул специализированных транспортных белков (например, порин), что обеспечивает её высокую проницаемость, а также белки-рецепторы, распознающие белки, которые переносятся через обе мембраны митохондрий в особых точках их контакта – зонах слипания.

Внутренняя мембрана митохондрий образует складки – кристы, благодаря чему значительно увеличивается внутренняя поверхность митохондрий. В состав внутренней мембраны входят транспортные белки; ферменты дыхательной цепи и сукцинатдегидрогеназа; комплекс АТФ-синтетазы. На кристах имеются элементарные частицы (оксисомы, или F1-частицы), состоящие из округлой головки (9 нм) и цилиндрической ножки. Именно на них происходит сопряжение процессов окисления и фосфорилирования (АДФ → АТФ).

Чаще всего кристы располагаются перпендикулярно длинной оси митохондрий и имеют пластинчатую (ламеллярную) форму. В клетках, синтезирующих стероидные гормоны, кристы имеют вид трубочек или пузырьков - тубулярно-везикулярные кристы. В этих клетках ферменты стероидного синтеза частично локализуются на внутренней мембране митохондрий

Число и площадь крист отражает функциональную активность клеток: наибольшая площадь крист характерна, например, для митохондрий клеток сердечной мышцы, где потребность в энергии постоянно очень велика.

Митохондриальный матрикс – мелкозернистое вещество, заполняющее полость митохондрии. Матрикс содержит несколько сотен ферментов: ферменты цикла Кребса, окисления жирных кислот, белкового синтеза. Здесь иногда встречаются митохондриальные гранулы, а также локализуются митохондриальные ДНК, иРНК, тРНК, рРНК и митохондриальные рибосомы. Митохондриальные гранулы – частицы высокой электронной плотности диаметром 20-50 нм, содержащие ионы Са и Мg.

Митохондриальная ДНК имеет кольцевую форму и включает 37 генов. Генетическая информация митохондриальной ДНК обеспечивает синтез около 5-6% белков митохондрий (ферменты электрон-транспортной системы). Синтез других митохондриальных белков контролируется ДНК ядра. Наследование митохондриальной ДНК происходит только по материнской линии.

Повреждения митохондриальной ДНК в результате мутаций могут привести к развитию ряда патологий - митохондриальных цитопатий (синдромы Барта, Патерсона, МERRF (красных разорванных волокон) и др.).

ЛИЗОСОМЫ – мембранные органеллы, которые обеспечивают внутриклеточное переваривание (расщепление) макромолекул внеклеточного и внутриклеточного происхождения, и обновление компонентов клетки.

Морфологически лизосомы представляют собой округлые пузырьки, ограниченные мембраной и содержащие большое количество различных гидролаз (более 60 ферментов). Наиболее характерными ферментами лизосом являются: кислая фосфатаза (маркёр лизосом), протеазы, нуклеазы, сульфатазы, липазы, гликозидазы. Все литические ферменты лизосом представляют собой кислые гидролазы, т.е. оптимум их активности проявляется при рН≈5.

Мембрана лизосом (около 6 нм толщиной) обладает протонным насосом, вызывающим закисление среды внутри органелл, обеспечивает диффузию низкомолекулярных продуктов переваривания макромолекул в гиалоплазму и препятствует утечке литических ферментов в гиалоплазму.

Повреждение мембраны приводит к разрушению клетки вследствие самопереваривания.

Лизосомы присутствуют во всех клетках. Особенно много лизосом в тех клетках, где активно протекают процессы фагоцитоза с последующим перевариванием захваченного материала (например, в нейтрофильных гранулоцитах, макрофагах, остеокластах).

Лизосомы подразделяются на первичные (неактивные) и вторичные (активные).

Первичные лизосомы (гидролазные пузырьки) – округлые пузырьки небольшого размера (обычно около 50 нм диаметром), с мелкозернистым, гомогенным, плотным матриксом. Надежная идентификация первичных лизосом возможна только при гистохимическом выявлении характерных ферментов (кислая фосфатаза). Первичные лизосомы – неактивные структуры, еще не вступившие в процессы расщепления субстратов.

Вторичные лизосомы – органеллы, активно участвующие в процессах внутриклеточного переваривания. Диаметр вторичных лизосом обычно составляет 0.5-2 мкм, их форма и структура могут существенно варьировать в зависимости от перевариваемого субстрата, но обычно содержимое вторичных лизосом гетерогенно.

Вторичная лизосома – результат слияния первичной лизосомы с фагосомой или аутофагосомой (Рис.8).

Фаголизосома формируется путем слияния первичной лизосомы с фагосомой - мембранным пузырьком, содержащим материал, захваченный клеткой извне. Процесс разрушения этого материала называется гетерофагией. Гетерофагия играет важную роль в функции всех клеток. Особое значение гетерофагия имеет для клеток, осуществляющих защитную функцию, таких как макрофаги и нейтрофильные лейкоциты, которые захватывают и переваривают болезнетворные микроорганизмы.

Аутофаголизосома образуется при слиянии первичной лизосомы с аутофагосомой - мембранным пузырьком, содержащим собственные компоненты клетки, которые подлежат разрушению. Процесс переваривания внутриклеточного материала называется аутофагией. Аутофагия обеспечивает постоянное обновление клеточных структур благодаря перевариванию митохондрий, полисом, фрагментов мембран.

Рис.8.

Остаточные тельца – лизосомы, содержащие непереваренный материал, которые могут находиться в цитоплазме длительное время. В некоторых долгоживущих клетках (нейроны, кардиомиоциты, гепатоциты) в остаточных тельцах накапливается коричневый эндогенный пигмент липофусцин – «пигмент старения».

Дефицит лизосомальных ферментов может приводить к развитию ряда заболеваний (болезни накопления), вызванных накоплением в клетках непереваренных веществ, которые нарушают функцию клеток. Примерами могут служить: болезнь Хюрлера, при которой из-за отсутствия α-L-идуронидазы фибробласты и остеобласты накапливают дерматан сульфат, а у больных отмечаются множественные дефекты хондро- и остеогенеза и умственное отставание; болезнь Тэя-Сакса (из-за недостаточности гексозаминидазы А происходит накопление гликолипидов в нервных клетках и поражается нервная система); болезнь Гоше (вследствие наследственного дефекта глюкоцереброзидазы гликолипиды накапливаются в макрофагах и поражаются печень и селезенка) и другие.

Пероксисомы – сферические мембранные органеллы диаметром 0.05 – 1.5 мкм, с умеренно плотным гомогенным или мелкозернистым матриксом. Мелкие пероксисомы встречаются во всех клетках, а крупные пероксисомы – в гепатоцитах, макрофагах, в клетках канальцев почки. Матрикс пероксисом содержит до 50 различных ферментов, важнейшие из которых: каталаза (маркёр пероксисом), пероксидаза, оксидазы аминокислот, уратоксидаза.

У некоторых видов животных в пероксисомах выявляется более плотная кристаллическая сердцевина – нуклеоид, состоящая из уратоксидазы. В пероксисомах клеток человека нуклеотида нет, поскольку отсутствует способность метаболизировать ураты.

Функции пероксисом:

  • окисление аминокислот и других субстратов;

  • защита клетки от действия перекиси водорода, сильного окислителя, образующегося в результате окисления органических соединений, и оказывающего повреждающий эффект на клетку. При этом каталаза пероксисом разлагает перекись водорода на воду и кислород.

  • участие в расщеплении жирных кислот;

  • участие в обезвреживании ряда веществ (спирт и др.).

Нарушения активности пероксисом вызывает ряд наследственных заболеваний – пероксисомных болезней с тяжелыми нарушениями нервной системы (синдром Целльвегера и др.)

Рис.9.

Цитоскелет – сложная трехмерная сеть немембранных органелл (рис.9):

  • микротрубочек;

  • микрофиламентов;

  • промежуточных филаментов.

Основная функция цитоскелета – опорно-двигательная:

  • поддержание и изменение формы клеток;

  • перемещение компонентов внутри клетки;

  • транспорт веществ внутрь клетки и из клетки;

  • обеспечение подвижности клетки

Микротрубочки – наиболее крупные компоненты цитоскелета. Микротрубочки – полые цилиндрические образования различной длины, с диаметром 24-25 нм, с толщиной стенки 5 нм.

Стенка микротрубочки состоит из спирально

расположенных нитей – профиламентов, образованных димерами из глобулярных белковых молекул – α- и β-тубулина.

Стенка микротрубочки образована 13 субъединицами-профиламентами.

Микротрубочки могут располагаться в цитоплазме в виде отдельных элементов, в виде пучков, где они связаны тонкими поперечными мостиками, или могут частично сливаться друг с другом, образуя дуплеты (в аксонеме ресничек и жгутиков) и триплеты (в базальном тельце и центриолях.

Микротрубочки представляют собой лабильную систему, в которой сохраняется равновесие между их постоянной сборкой и диссоциацией.

Центрами организации микротрубочек (ЦОМТ) являются сателлиты – глобулярные белковые структуры, содержащиеся в базальных тельцах ресничек и клеточном центре, а также центромеры хромосом.

Функции микротрубочек:

  • поддержание стабильной формы клеток, и порядка распределения её компонентов;

  • обеспечение внутриклеточного транспорта, в том числе органелл, пузырьков, секреторных гранул (благодаря некоторым белкам, ассоциированным с микротрубочками);

  • образование основы центриолей и ахроматинового веретена деления и обеспечение движения хромосом в процессе митоза;

  • образование основы ресничек и жгутиков, а также обеспечение их движения.

Угнетение самосборки микротрубочек при действии на клетку блокаторов (колхицин и др.) вызывает гибель быстроделящихся клеток вследствие отсутствия митотического веретена деления, нарушения транспортных процессов в клетке (аксонный транспорт в нейронах, секреция), изменения форм клетки, дезорганизацию клеточных органелл (в частности, цистерн ЭПС).

Клеточный центр образован двумя полыми цилиндрическими структурами - центриолями, которые расположены под прямым углом друг к другу.

Каждая центриоль представляет собой короткий цилиндр длиной ~ 0,5 мкм и диаметром ~ 0,2 мкм, состоящий из 9 триплетов частично слившихся трубочек (А, В и С), связанных поперечными белковыми мостиками (рис.10).

Формула строения центриоли описывается как (9 × 3) + 0, так как в центральной части микротрубочки отсутствуют. Каждый триплет центриоли связан с глобулярными белковыми тельцами – сателлитами, от которых отходят микротрубочки, образующие центросферу.

Рис.10.

В неделящейся клетке выявляется одна пара центриолей – диплосома, которая располагается обычно вблизи ядра. Перед делением клетки в S-периоде интерфазы происходит дупликация центриолей: под прямым углом к каждой зрелой (материнской) центриоли пары образуется новая (дочерняя) центриоль.

В ранней профазе митоза пары центриолей расходятся к полюсам клетки и служат центрами образования микротрубочек ахроматинового веретена деления.

Реснички и жгутики являются выростами цитоплазмы, обладающие подвижностью. Основу ресничек и жгутиков составляет каркас из микротрубочек, называемый аксонемой (рис.11).

Длина ресничек равна 2-10 мкм, а их количество на поверхности одной клетки может составлять до нескольких сотен.

В организме человека жгутик есть только в одном типе клеток – сперматозоидах. При этом один сперматозоид имеет один жгутик длиной 50-70 мкм.

Рис.11.

Аксонема образована 9 периферическими парами микротрубочек (микротрубочки А и В) и одной центрально расположенной парой; такое строение описывается формулой (9 × 2) + 2. Центральная пара микротрубочек окружена центральной оболочкой, от которой к периферическим дуплетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками белка нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят “ручки” из белка динеина, который обладает АТФ-азной активностью, что необходимо для скольжения соседних дублетов в аксонеме, вызывающих движение (биение) ресничек и жгутиков

Мутации, вызывающих изменения белков ресничек и жгутиков, ведут к различным нарушениям функций клеток. Так, при отсутствии динеиновых ручек (синдром неподвижных ресничек, или синдром Картагенера), больные страдают хроническими заболеваниями дыхательной системы и бесплодием (вследствие неподвижности спермиев и нарушений продвижения яйцеклеток по яйцеводу).

В основании каждой реснички или жгутика лежит базальное тельце, сходное по строению с центриолью. На уровне апикального конца базального тельца микротрубочка С триплета заканчивается, тогда как микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы

Микрофиламенты – тонкие белковые нити диаметром 5-7 нм, расположенные в цитоплазме поодиночке, в виде сетей или упорядоченными пучками (в скелетной и сердечной мышцах). Основной белок микрофиламентов – актин – встречается в клетках как в мономерной форме (глобулярный G-актин), так и в виде полимерного фибриллярного F-актина.

Функции микрофиламентов:

  • в мышечных волокнах и клетках актиновые микрофиламенты образуют упорядоченные пучки и при взаимодействии с миозиновыми филаментами обеспечивают их сокращение.

  • в немышечных клетках микрофиламенты образуют кортикальную (терминальную) сеть, в которой микрофиламенты сшиты с помощью особых белков (филамин и др.). Кортикальная сеть, с одной стороны, обеспечивает поддержание формы клетки, а с другой - способствует изменениям формы плазмолеммы, обеспечивая, таким образом, функции эндо- и экзоцитоза, миграции клеток, образования псевдоподий.

  • микрофиламенты тесно связаны с органеллами, транспортными пузырьками, секреторными гранулами и играют важную роль в их перемещении внутри цитоплазмы.

  • микрофиламенты формируют сократимую перетяжку (срединное тельце) при цитотомии, завершающей клеточное деление.

  • микрофиламенты участвуют в организации структуры межклеточных соединений (zonula adherens – поясок сцепления).

  • микрофиламенты являются основой специальных выростов цитоплазмы – микроворсинок и стереоцилий.

Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты (рис.12).

Микроворсинки обеспечивают многократное увеличение площади поверхности клетки. На апикальной поверхности некоторых клеток, активно участвующих в процессах расщепления и всасывания веществ, имеется до несколько тысяч микроворсинок, образующих в совокупностищёточную каемку (эпителий тонкой кишки и почечных канальцев).

Рис.12.

Основа каждой микроворсинки – пучок, содержащий около 40 микрофиламентов, расположенных вдоль её длинной оси. Микрофиламенты имеют поперечные сшивки из белков (фимбрин, виллин), и прикреплены к плазмолемме особыми белковыми мостиками (минимиозин). У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть

Стереоцилии – длинные, иногда ветвящиеся микроворсинки, имеющие каркас из микрофиламентов. Они встречаются редко (например, в главных клетках эпителия протока придатка семенника).

Промежуточные филаменты – прочные и устойчивые белковые нити толщиной около 10 нм (что является промежуточным значением между толщиной микротрубочек и микрофиламентов). Промежуточные филаменты располагаются в виде трехмерных сетей в различных участках цитоплазмы, окружают ядро, участвуют в образовании межклеточных контактов (десмосом) и поддерживают форму отростков.

Главная функция промежуточных филаментов – поддерживающая и опорная.

Промежуточные филаменты в клетках различных типов различаются по своей химической природе и молекулярному весу. Выделяют 6 основных классов промежуточных филаментов

Цитокератины – промежуточные филаменты, характерные для клеток эпителия. Этот класс включает около 20 близких полипептидов (тонофиламентов). Кератиновые филаменты входят в состав десмосом и полудесмосом, участвуют в образовании рогового вещества в эпителии кожи и являются главным компонентом волос и ногтей.

Десмины – промежуточные филаменты мышечных тканей (за исключением миоцитов сосудов). Десмины играют важную роль в организации миофибрилл в мышечной ткани и обеспечении сократительной функции

Виментины – филаменты, характерные для различных клеток мезенхимного происхождения (фибробласты, макрофаги, остеобласты, эндотелий и гладкие миоциты сосудов).

Нейрофиламенты – промежуточные филаменты нейронов, которые играют важную роль в поддержании формы отростков нервных клеток.

Глиальные клетки содержат глиальный фибриллярный кислый белок и встречаются только в клетках нейроглии (астроциты, олигодендроциты).

Идентификация классов промежуточных филаментов (методами иммуноцитохимии с антителами к данному типу промежуточных филаментов) имеет большое значение в диагностике опухолей, и, следовательно, в прогнозе и выборе противоопухолевого лечения. Так, выявление различных форм кератинов свидетельствует о недифференцированных опухолях эпителиального происхождения, карциномах, аденокарциномах. Десмин является маркёром опухолей мышечного происхождения, а глиальный фибриллярный кислый белок – маркёр опухолей глиального происхождения.

ВКЛЮЧЕНИЯ

В отличие от органелл, включения цитоплазмы – непостоянные компоненты цитоплазмы, возникающие и исчезающие в зависимости от метаболического состояния клеток.

Включения подразделяются на трофические, секреторные, экскреторные и пигментные.

Трофические включения разделяются в зависимости от природы накапливаемого вещества на липидные, углеводные и белковые. Липидные включения – это капли нейтрального жира различного диаметра, которые накапливаются в цитоплазме и служат резервом энергетических субстратов, используемых клеткой. Из углеводных включений наиболее распространены гранулы гликогена (полимер глюкозы), эти включения также используются в качестве источника энергии. Примером белковых включений могут служить запасы белка вителлина в яйцеклетках животных. Они являются источником питания на ранних стадиях развития зародыша.

Секреторные включения имеют вид пузырьков, окруженные мембраной и содержащие биологически активные вещества, которые синтезируются в самой клетке, а затем выделяются (секретируются) во внешнюю среду. К таким включениям относятся секреторные гранулы, содержащие пищеварительные проферменты (зимогеновые гранулы), гормоны, медиаторы и др.

Экскреторные включения по своему строению сходны с секреторными, но в отличие от них, содержат вредные продукты метаболизма, подлежащие удалению из цитоплазмы клеток.

Пигментные включения представляют собой скопления эндогенных (синтезированных клеткой), или экзогенных (захваченных клеткой извне) окрашенных веществ - пигментов. Наиболее распространенными эндогенными пигментами являются гемоглобин, гемосидерин, билирубин, меланин, липофусцин; к экзогенным пигментам относят каротин, различные красители, пылевые частицы и др. Меланин – тёмно-коричневый пигмент, встречающийся в норме в коже, волосах, пигментной оболочке сетчатки в виде меланосом - гранул, окруженных мембраной. Липофусцин – гранулы жёлто-коричневого пигмента из продуктов лизосомного переваривания – накапливается в долгоживущих клетках (нейроны, кардиомиоциты), и поэтому его рассматривают как «пигмент старения».

ГИАЛОПЛАЗМА

Гиалоплазму называют также цитозолем, или клеточным матриксом. Гиалоплазма – сложная коллоидная система, которая может менять своё агрегатное состояние: переходить из более жидкого (золь) в более плотное (гель). Гиалоплазма состоит из гомогенного мелкозернистого вещества с низкой электронной плотностью, в которое погружены органеллы и включения. В составе гиалоплазмы – вода, белки (ферменты), нуклеиновые кислоты, полисахариды, липиды, а также неорганические вещества.

Функции гиалоплазмы:

  • создание жидкой микросреды;

  • метаболическая: метаболизм белков, жиров, углеводов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]