Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-35_-_9_shrift (1).doc
Скачиваний:
477
Добавлен:
13.04.2015
Размер:
2.35 Mб
Скачать

24. Основные виды помех в каналах и трактах проводных мсп(многоканальной системы передачи) с чрк(частотным разделением каналов).

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t,) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи — это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок. 

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные — за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах — замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс — длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

К искажениям формы сигнала на выходе непрерывного канала приводят также сдвиг его спектральных составляющих по частоте, фазовые скачки и фазовое дрожание несущего колебания. В результате частотного сдвига, фазовых скачков и фазового дрожания и появляется паразитная угловая модуляция сигнала.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху — как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10-15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать —49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т0. К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения рН0М до рМАКС происходит за время, соизмеримое с временем единичного интервала 0.

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П= 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕРЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10-5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного — 17,4 дБ, а его нестабильность во времени на одном участке переприёма — не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.

25.Принципы построения СП (систем передачи) с временным разделением каналов (ВРК). Основные этапы преобразования аналоговых сигналов в цифровые (дискретизация по времени, квантование по уровню, кодирование).

   В системах передачи с ВРК используются цифровые сигналы, представляющие собой ту или иную импульсную кодовую последовательность, т.е. это система для передачи цифровых данных. Напомним, что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ, КВАНТОВАНИЕ, КОДИРОВАНИЕ. Дискретизация осуществляется на основе теоремы Котельникова. Для сигналов ТЧ  с  полосой  0,3 – 3,4 кГц + 0,9 кГц (защитный интервал), т.е. fв = 4 кГц. Тактовая частота дискретизации fт = 2fв = 8 кГц. Каждый отсчёт передаётся 8 битами, значит сигнал ТЧ можно передавать со скоростью fт × 8 бит = 8×103 ×8 = 64 кбит/с. Это и есть скорость передачи одного канала ТЧ. Отсчёты передаются в виде восьмиразрядных двоичных чисел, получаемых при квантовании отсчётов. Т.к. квантование имеет конечное число уровней, да ещё ограничения по max и min, то очевидно, что квантованный сигнал не является точным. Разница между истинным значением отсчёта и его квантованным значением – это шум квантования. Значение шума квантования зависит от количества уровней квантования, скорости изменения сигнала и от спосрба выбора шага квантования.

26. Особенности построения и отличия плезиохронной и синхронной цифровых иерархий. Стандарты первичной цифровой сети, построенной на основе технологий PDH, SDH и ATM.

Особенности построения и отличия плезиохронной и синхронной цифровых иерархий

Первичная цифровая сеть на основе PDH/SDH состоит из узлов мультиплексирования (мультиплексоров), выполняющих роль преобразователей между каналами различных уровней иерархии стандартной пропускной способности (ниже), регенераторов, восстанавливающих цифровой поток на протяженных трактах, и цифровых кроссов, которые осуществляют коммутацию на уровне каналов и трактов первичной сети. Схематично структура первичной сети представлена на рис. 7.1.

Рисунок 7.1 – Структура первичной сети

Как видно из рисунка, первичная сеть строится на основе типовых каналов, образованных системами передачи. Современные системы передачи используют в качестве среды передачи сигналов электрический и оптический кабель, а также радиочастотные средства (радиорелейные и спутниковые системы передачи). Цифровой сигнал типового канала имеет определенную логическую структуру, включающую цикловую структуру сигнала и тип линейного кода. Цикловая структура сигнала используется для синхронизации, процессов мультиплексирования и демультиплексирования между различными уровнями иерархии каналов первичной сети, а также для контроля блоковых ошибок. Линейный код обеспечивает помехоустойчивость передачи цифрового сигнала. Аппаратура передачи осуществляет преобразование цифрового сигнала с цикловой структурой в модулированный электрический сигнал, передаваемый затем по среде передачи. Тип модуляции зависит от используемой аппаратуры и среды передачи.

Таким образом, внутри цифровых систем передачи осуществляется передача электрических сигналов различной структуры, на выходе цифровых систем передачи образуются каналы цифровой первичной сети, соответствующие стандартам по скорости передачи, цикловой структуре и типу линейного кода.

Обычно каналы первичной сети приходят на узлы связи и оканчиваются в линейно-аппаратном цехе (ЛАЦе), откуда кроссируются для использования во вторичных сетях. Можно сказать, что первичная сеть представляет собой банк каналов, которые затем используются вторичными сетями (сетью телефонной связи, сетями передачи данных, сетями специального назначения и т.д.). Существенно, что для всех вторичных сетей этот банк каналов един, откуда и вытекает обязательное требование, чтобы каналы первичной сети соответствовали стандартам.

Современная цифровая первичная сеть строится на основе трех основных технологий: плезиохронной иерархии (PDH), синхронной иерархии (SDH) и асинхронного режима переноса (передачи) (ATM). Из перечисленных технологий только первые две в настоящее время могут рассматриваться как основа построения цифровой первичной сети.

Рассмотрим более подробно историю построения и отличия плезиохронной и синхронной цифровых иерархий. Схемы ПЦС были разработаны в начале 80х. Всего их было три:

1) принята в США и Канаде, в качестве скорости сигнала первичного цифрового канала ПЦК (DS1) была выбрана скорость 1544 кбит/с и давала последовательность DS1 – DS2 – DS3 – DS4 или последовательность вида: 1544 – 6312 – 44736 – 274176 кбит/с. Это позволяло передавать соответственно 24, 96, 672 и 4032 канала DS0 (ОЦК 64 кбит/с);

2) принята в Японии, использовалась та же скорость для DS1; давала последовательность DS1 – DS2 – DSJ3 – DSJ4 или последовательность 1544 – 6312 – 32064 – 97728 кбит/с, что пзволяло передавать 24, 96, 480 или 1440 каналов DS0;

3) принята в Европе и Южной Америке, в качестве превичной была выбрана скорость 2048 кбит/с и давала последовательность E1 – E2 – E3 – E4 – E5 или 2048 – 8448 – 34368 – 139264 – 564992 кбит/с. Указанная иерархия позволяла передавать 30, 120, 480, 1920 или 7680 каналов DS0.

Комитетом по стандартизации ITU – T был разработан стандарт, согласно которому:

-- во-первых, были стандартизированы три первых уровня первой иерархии, четыре уровня второй и четыре уровня третьей иерархии в качестве основных, а также схемы кросс-мультиплексирования иерархий;

-- во-вторых,последние уровни первой и третьей иерархий не были рекомендованы в качестве стандартных.

Указанные иерархии, известные под общим названием плезиохронная цифровая иерархия PDH, или ПЦИ, сведены в таблицу 7.1.

Таблица 7.1 – Три схемы ПЦС: АС-американская; ЯС-японская; ЕС-европейская.

Уровень цифровой иерархии

Скорости передач, соответствующие различным схемам цифровой иерархии

AC: 1544 kbit/s

ЯС: 1544 kbit/s

EC: 2048 kbit/s

0

64

64

64

1

1544

1544

2048

2

6312

6312

8448

3

44736

32064

34368

4

---

97728

139264

Но PDH обладала рядом недостатков, а именно:

    затруднённый ввод/вывод цифровых потоков в промежуточных пунктах;

    отсутствие средств сетевого автоматического контроля и управления;

    многоступенчатое 52осстановление синхронизма требует достаточно большого времени.

Также можно считать недостатком наличие трёх различных иерархий. Указанные недостатки PDH, а также ряд других факторов привели к разработке в США ещё одной иерархии – иерархии синхронной оптической сети SONET, а в Европе аналогичной синхронной цифровой иерархии SDH, предложенными для использования на волоконно-оптических линиях связи(ВОЛС).Но из-за неудачно выбранной скорости передачи для STS-1 , было принято решение – отказаться от создания SONET, а создать на её основе SONET/SDH со скоростью передачи 51,84 Мбит/с первого уровня ОС1 этой СЦИ. В результате OC3 SONET/SDH соответствовал STM-1 иерархии SDH. Скорости передач иерархии SDH представлены в таблице 7.2.

Таблица 7.2 – Скорости передач иерархии SDH

Уровень SDH.

Скорость передачи, Мбит/с

STM-1

155,520

STM-4

622,080

STM-8

1244,160

STM-12

1866,240

STM-16

2487,320

Иерархии PDH и SDH взаимодействуют через процедуры мультиплексирования и демультиплексирования потоков PDH в системы SDH.

Основным отличием системы SDH от системы PDH является переход на новый принцип мультиплексирования. Система PDH использует принцип плезиохронного (или почти синхронного) мультиплексирования, согласно которому для мультиплексирования, например, четырех потоков Е1 (2048 кбит/с) в один поток Е2 (8448 кбит/с) производится процедура выравнивания тактовых частот приходящих сигналов методом стаффинга. В результате при демультиплексировании необходимо производить пошаговый процесс восстановления исходных каналов. Например, во вторичных сетях цифровой телефонии наиболее распространено использование потока Е1. При передаче этого потока по сети PDH в тракте ЕЗ необходимо сначала провести пошаговое мультиплексирование Е1-Е2-ЕЗ, а затем – пошаговое демультиплексирование ЕЗ-Е2-Е1 в каждом пункте выделения канала Е1.

В системе SDH производится синхронное мультиплексирование/ демультиплексирование, которое позволяет организовывать непосредственный доступ к каналам PDH, которые передаются в сети SDH. Это довольно важное и простое нововведение в технологии привело к тому, что в целом технология мультиплексирования в сети SDH намного сложнее, чем технология в сети PDH, усилились требования по синхронизации и параметрам качества среды передачи и системы передачи, а также увеличилось количество параметров, существенных для работы сети. Как следствие, методы эксплуатации и технология измерений SDH намного сложнее аналогичных для PDH.

Международным союзом электросвязи ITU-T предусмотрен ряд рекомендаций, стандартизирующих скорости передачи и интерфейсы систем PDH, SDH и ATM, процедуры мультиплексирования и демультиплексирования, структуру цифровых линий связи и нормы на параметры джиттера и вандера (рисунок 7.2).

Рисунок 7.2 – Стандарты первичной цифровой сети, построенной на основе технологий PDH, SDH и ATM

Рассмотрим основные тенденции в развитии цифровой первичной сети. В настоящий момент очевидной тенденцией в развитии технологии мультиплексирования на первичной сети связи является переход от PDH к SDH. Если в области средств связи этот переход не столь явный (в случае малого трафика по-прежнему используются системы PDH), то в области эксплуатации тенденция к ориентации на технологию SDH более явная.

Операторы, создающие большие сети, уже сейчас ориентированы на использование технологии SDH. Следует также отметить, что SDH дает возможность прямого доступа к каналу 2048 кбит/с за счет процедуры ввода/вывода потока Е1 из трактов всех уровней иерархии SDH. Канал Е1 (2048 кбит/с) является основным каналом, используемым в сетях цифровой телефонии, ISDN и других вторичных сетях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]