Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
111.docx
Скачиваний:
64
Добавлен:
09.04.2015
Размер:
242.59 Кб
Скачать

№ 36

  1. Изготовление электронномикроскопических препаратов.

Различают 2 вида электронных микроскопа:

  1. Трансмиссионный/просвечивающий

  2. Растровый/сканирующий

В электрическом микроскопе вместо стеклянных линз используют электромагнитные, которые открывают пучок электронов, идущих от электронной пушки. ТЭМ дает увеличенное проекционное изображение, пучок электронов проходит через ультратонкий срез и его изображение мы видим на флюероестирующем экране. РЭМ позволяет получать объемное стереоскопическое изображение, пучок электронов в скане скользит по поверхности объекта. Давая сведения о его топографии и рельефе.

Для просмотра проб в электронном микротоме:

  1. Зафиксировать для сохранения прижизненного состояния. Объем пробы 0,5-1 мм3 . Для фиксации используется раствор глутарового альдегида 2,5%. Время до 2-х часов. Затем в осмиевой кислоте тетра оксида Os 1%, время 1-2 ч. После, пробы проводят по спиртам до абсолютного спирта 100град

  2. Заливка в заливочную среду (эпоксидные смолы эпон, аралдит и др). для заливки необходимы желатиновые кандулы. В каждую кладется 1 проба, заливают смолой и славят в термостат при температуре 60 град на 1-2 сутки для полимеризации-затвердения.

  3. Закрепление в объектодержатели и затачивают в форме 4-х граненой пирамиды, плоская поверхность которого будет служить поверхностью для резки. Резка блоков проводится на ультрамикротоме стеклянными/алмазными ножами, толщина срезов не более 50 нм. Полученные срезы монтируют на металлической сеточке из меди или палладия, на которые предварительно наносится пленка-подложка из раствора коллодия 1,5% раствора в амилацетате или 0,2 % формвара, растворенного в дихлорэтане. Полученные срезы констатируют/подкрашивают на сеточках урамилацетата и цитратом свинца.

Для просмотра на сканирующем электронном микроскопе пробы после фиксации и обезвоживания накапливают на специальные металлические столики электропроводным клеем. Пробы напыляют в специальной установке золотом/серебром/другим драг.металлом для прохождения пучка электронов.

  1. Строение оболочек сердца и проводящей системы.

Анатомически сердце - это мышечный орган. Сердце работает на протяжении всей жизни человека и животого. Оно перекачивает около 5-6 литров крови в минуту. Этот объем увеличивается, когда человек двигается, физически напрягается, и уменьшается во время отдыха.

Сердце располагается в центре грудной клетки, заключено в тонкую фиброзную околосердечную сумку, перикард, и поддерживается крупными кровеносными сосудами. Небольшое количество жидкости в полости перикарда смачивает поверхность сердца и способствует его свободным движениям во время сокращения и расслабления.

Единственной функцией сердца является обеспечение энергией, которая необходима для циркуляции крови в сердечно-сосудистой системе. Кровоток через все органы тела осуществляется пассивно и происходит только благодаря тому, что при осуществлении насосной деятельности сердца артериальное давление поддерживается на более высоком уровне, чем венозное. Насос правого сердца создает энергетический импульс, необходимый для передвижения крови через сосуды легких, а насос левого сердца обеспечивает необходимую энергию для перемещения крови через органы тела.

Венозная кровь возвращается из органов тела в правое предсердие через полые вены.

Она проходит через трикуспидальный клапан в правый желудочек, а отсюда прогоняется через клапан легочной артерии в легочное кровообращение через легочные артерии. Насыщенная кислородом венозная легочная кровь течет по легочным венам в левое предсердие и проникает через митральный клапан в левый желудочек. Отсюда кровь прогоняется через аортальный клапан в аорту для дальнейшего распределения по органам тела.

Клапаны имеют такое строение, чтобы кровоток мог осуществляться только в одном направлении, они пассивно открываются и закрываются, реагируя на динамику градиента давления вокруг них. Насосная деятельность желудочка осуществляется за счет циклического изменения полости желудочков в результате ритмичного и синхронного сокращения и расслабления отдельных клеток сердечной мышцы, которые концентрически располагаются в толще стенки желудочка. Когда мышечные клетки желудочка сокращаются, то в желудочковой ткани возникает концентрическое напряжение, которое создает постепенно нарастающее давление внутри камеры. Как только желудочковое давление превышает давление в легочной артерии (правый насос) или аорте (левый насос), кровь с силой выбрасывается из камеры через выходной клапан. Эта фаза сердечного цикла, во время которой сокращаются клетки мускулатуры желудочка, называется систолой. Так как во время систолы давление в желудочке выше, чем в предсердии, то атриовентрикулярный (АУ) клапан закрыт.

Когда мышечные клетки желудочка расслабляются, давление в желудочке падает ниже, чем в предсердии, AV клапан открывается и желудочек заполняется вновь кровью. Эта часть сердечного цикла называется диастолой. Клапан на выходе во время диастолы закрыт, так как артериальное давление выше, чем внутри желудочковое. После периода диастолического заполнения начинается систолическая фаза нового сердечного цикла.

Можно сказать, что сердце – это мышечный насос, который обеспечивает беспрерывное движение крови по сосудам. Вместе сердце и сосуды составляют сердечно-сосудистую систему. Эта система состоит из большого и малого кругов кровообращения. Из левых отделов сердца кровь сначала движется по аорте, затем по крупным и мелким артериям, артериолам, капиллярам. В капиллярах кислород и другие необходимые организму вещества поступают в органы и ткани, а оттуда выводятся углекислый газ, продукты обмена. После этого кровь из артериальной превращается в венозную и опять начинает движение к сердцу. Сначала по венулам, затем по более мелким и крупным венам. Через полые вены кровь снова попадает в сердце, только уже в правое предсердие. Образуется большой круг кровообращения.

Венозная кровь из правых отделов сердца по легочным артериям направляется в легкие, где обогащается кислородом и снова возвращается в сердце.

Внутри сердце разделено перегородками на четыре камеры. Два предсердия разделены межпредсердной перегородкой на левое и правое предсердия. Левый и правый желудочки сердца разделены межжелудочковой перегородкой. В норме левые и правые отделы сердца абсолютно раздельны. У предсердий и желудочков разные функции. В предсердиях накапливается кровь, поступающая в сердце. Когда объем этой крови достаточен, она проталкивается в желудочки. А желудочки проталкивают кровь в артерии, по которым она движется по всему организму. Желудочкам приходится выполнять более тяжелую работу, поэтому мышечный слой в желудочках значительно толще, чем в предсердиях. Предсердия и желудочки с каждой стороны сердца соединяются предсердно-желудочковым отверстием. Кровь через сердце движется только в одном направлении. По большому кругу кровообращения из левой части сердца (левого предсердия и левого желудочка) в правую, а по малому из правой в левую. Правильное направление обеспечивает клапанный аппарат сердца:

· трехстворчатый

· легочный

· митральный

· аортальный клапаны.

Они открываются в нужный момент и закрываются, препятствуя кровотоку в обратном направлении.

Трехстворчатый клапан

Он расположен между правым предсердием и правым желудочком. Он состоит из трех створок. Если клапан открыт, кровь переходит из правого предсердия в правый желудочек. Когда желудочек наполняется, мышца его сокращается и под действием давления крови клапан закрывается, препятствуя обратному току крови в предсердие.

Легочный клапан

При закрытом трехстворчатом клапане выход крови в правом желудочке возможен только через легочной ствол в легочные артерии. Легочный клапан расположен на входе в легочный ствол. Он открывается под давлением крови при сокращении правого желудочка, кровь поступает в легочные артерии, затем под действием обратного тока крови при расслаблении правого желудочка он закрывается, препятствуя обратному поступлению крови из легочного ствола в правый желудочек.

Двустворчатый или митральный клапан

Находится между левым предсердием и левым желудочком. Состоит из двух створок. Если он открыт, кровь поступает из левого предсердия в левый желудочек, при сокращении левого желудочка он закрывается, препятствуя обратному току крови.

Аортальный клапан

Закрывает вход в аорту. Тоже состоит из трех створок, которые имеют вид полулунный. Открывается при сокращении левого желудочка. При этом кровь поступает в аорту. При расслаблении левого желудочка, закрывается. Таким образом, венозная кровь (бедная кислородом) из полы вен попадает в правое предсердие. При сокращении правого предсердия через трехстворчатый клапан она продвигается в правый желудочек. Сокращаясь, правый желудочек выбрасывает кровь через легочной клапан в легочные артерии (малый круг кровообращения). Обогащаясь кислородом в легких кровь превращается в артериальную и по легочным венам продвигается в левое предсердие, затем в левый желудочек. При сокращении левого желудочка артериальная кровь через аортальный клапан под большим давлением попадает в аорту и разносится по всему организму (большой круг кровообращения).

Сердечная мышца называется миокардом

Выделяют сократительный и проводящий миокард. Сократительный миокард - это собственно мышца, которая сокращается и производит работу сердца. Для того чтобы сердце могло сокращаться в определенном ритме, оно имеет уникальную проводящую систему. Электрический импульс для сокращения сердечной мышцы возникает в синоатриальном узле, который находится в верхней части правого предсердия и распространяется по проводящей системе сердца, достигая каждого мышечного волокна.

Сердце представляет собой настолько своеобразный орган сосудистой системы, что его удобнее рассмотреть отдельно от сосудов. По своему развитию, строению и функции сердце значительно отличается от остальных частей сосудистой системы.

Стенка его подразделяется на три оболочки, или слоя:

  • эндокард,

  • миокард и

  • эпикард (от греческого слова cardia — сердце),

но эти оболочки не соответствуют трем оболочкам сосудистой стенки.

Морфологическое значение сердечной стенки становится понятным только после рассмотрения его развития.

Развитие сердца

Развивается сердце из двух зачатков: из

  • эндотелиальной трубки с окружающей ее мезенхимой и из так называемой

  • миоэпикардиальной пластинки, происходящей из висцеральных листков спланхнотомов.

Первый зачаток соответствует тому зачатку, из которого развиваются и все сосуды; миоэпикардиальная же пластинка является образованием совершенно особым. Вскоре - после своей закладки она диференцируется на две части, из которых внутренняя, прилежащая к эндотелиальной трубке, превращается в зачаток сердечной мышцы, а наружная становится висцеральным листком околосердечной сумки, т.е. эпикардом.

Таким образом, внутренняя оболочка сердца, или эндокард, по своему происхождению соответствует всей стенке сосудов, а миокард и эпикард являются слоями, не имеющими аналогов в стенках сосудов.

Эпикард — это обычная серозная оболочка. Следовательно, наиболее характерной частью, отличающейся своим развитием, является сердечная мышца, образующая средний слой сердца.

Гистологическое строение сердечной стенки

Не входя в отдельные анатомические детали, мы рассмотрим только гистологическое строение сердечной стенки, изучение которой начнем с внутренней оболочки, или эндокарда.

Эндокард. Эндокард развит не одинаково в различных отделах сердца. В общем он толще в левых камерах. Наибольшей толщины и сложности эндокард достигает на левой поверхности перегородки желудочков и у выходных отверстий аорты и легочной артерии. Наиболее тонок эндокард на трабекулах.

В толстых участках эндокарда различают следующие слои:

1) эндотелий с подстилающим слоем тонкофибриллярной ткани, содержащей клетки камбиального типа,

2) внутренний соединительнотканный слой;

3) и 4) мышечно-эластиновый слой в котором только иногда удается различить более внутренний эластический слой с преобладанием эластиновых волокон, и более наружный мышечный слой с преобладанием гладких мышечных волокон. Все эти слои обычно лишены сосудов. Однако мелкие сосуды присутствовать могут. Как кровеносные, так и лимфатические сосуды располагаются лишь в пятом, наружном соединительнотканном слое, содержащем большее или меньшее количество толстых эластиновых волокон, связанных с более тонкими эластиновыми сетями миокарда.

Эндокард по своему происхождению соответствует сосудистой стенке, а перечисленные только что слои его - трем оболочкам сосудов. Первые два слоя (1, 2) соответствуют внутренней оболочке (tunica intima), оба средние слоя (3) —средней оболочке (tunica media) и, наконец, последний, пятый слой (4)— наружной облочке (tunica adventitia).

В тонких участках эндокарда сколько-нибудь отчетливого подразделения на отдельные слои провести не удается, хотя все элементы их (эластиновые волокна, соединительнотканные пучки и гладкие мышечные клетки) в эндокарде имеются всюду. У более старых субъектов в эндокарде увеличивается число эластиновых волокон.

Сердечные клапаны (как атриовентрикулярные, так и полулунные) представляют собой складки эндокарда и в нормальном состоянии не содержат сосудов. В атриовентрикулярных клапанах на стороне, обращенной к предсердиям, преобладают гладкие мышцы, на противоположной — эластиновые волокна.

Эпикард. Эпикард, являясь висцеральным листком перикарда, имеет строение серозной оболочки. Он очень тонок и состоит из соединительной ткани, в которой часто, особенно у сосудов, располагаются жировые дольки. Снаружи эпикард покрыт серозным эпителием, состоящим из плоских клеток полигональной формы. В эпителии эпикарда встречаются и многоядерные клетки. В эпикарде проходят крупные кровзносные и лимфатические сосуды, а также нервы.

Миокард. Сердечная мышца, образующая среднюю часть сердечной стенки, или миокард, хотя и подразделяется на отдельные части (миокард предсердий и желудочков), но по своему происхождению и тонкому строению представляет единое целое. Такое строение миокарда как нельзя более соответствует его функциональным особенностям.

Гистогенез миокарда. Миокард развивается из клеток той части стенки спланхнотомов, из которых состоят обращенные к сердечной трубке части упомянутых выше мио-эпикардиальных пластинок. Эти клетки на известной стадии развития сливаются вместе в синцитиальную плазматическую многоядерную массу, которая, однако, в экспериментальных условиях может распадаться на отдельные клетки. Ядра этого синцития размножаются, масса его увеличивается в объеме, и в нем появляются идущие по различным направлениям миофибриллы с поперечной исчерченностью. После того, как ушковой перетяжкой сердечная трубка разграничивается на предсердия и желудочки, миокард подразделяется на соответствующие две части, которые, однако, перешейком ушкового канала остаются связанными друг с другом. Развивающийся синцитий миокарда врастающей соединительной тканью разделяется на отдельные мышечные пучки.

В сердце, закончившем свое развитие, пучки мышечных волокон миокарда располагаются довольно сложно, причем в предсердиях более правильно, чем в желудочках. Не входя в детальное рассмотрение расположения пучков в отдельных частях сердечной мышцы, отметим, что в миокарде предсердий можно различить два слоя: общий для обоих предсердий наружный кольцевой слой и внутренний продольный. Желудочки имеют трех- и четырехслойный миокард. В наружном слое, общем для обоих желудочков, мышечные пучки образуют петлю, начинающуюся в передней верхней части правого желудочка и заканчивающуюся в задней верхней части левого желудочка. Эти мышцы на верхушке сердца и образуют фигуру, известную в анатомии под названием водоворота (vortex cordis).

Остальные слои — отдельные для каждого желудочка. В правом желудочке их два: внутренний продольный и наружный (лежит между внутренним собственным и наружным общим) с петлеобразным ходом волокон. В левом желудочке собственных слоев три и расположение их еще более сложно, чем в правом желудочке.

Особенности строения сердечной мышечной ткани. Микроскопическое строение сердечной мышцы отличается рядом особенностей от строения скелетной поперечнополосатой мускулатуры.

Прежде всего сердечная мышца имеет сетчатую структуру, образованную из мышечных волокон, тонкое строение которых в общем весьма сходно с поперечнополосатыми волокнами соматической мускулатуры.

Сетчатое строение достигается в результате развития связей между волокнами. Связи устанавливаются при помощи боковых перемычек, так что в своей совокупности вся сеть образует узкопетлистый синцитий. Свободные концы в перекладинах этой сети имеются только в области фиброзного кольца, к которому прикрепляются концы отдельных мышечных волокон.

В саркоплазме мышечных волокон можно видеть миофибриллы, расположенные более или менее радиально и расчлененные на диски, аналогичные тем, которые встречаются в соматической мускулатуре. В саркоплазме располагаются и ядра. Однако в отличие от соматической мускулатуры ядра располагаются не в поверхностных слоях саркоплазмы, а в ее центральной части.

Следует отметить, что саркоплазма мышечных волокон миокарда богата различными включениями. В ней можно найти гликоген и значительное количество жировых веществ, среди которых много фосфолипоидов. Жировые вещества присутствуют как в виде явного жира, так и в маскированном состоянии. При многих, заболеваниях, вызывающих жировую дегенерацию, количество явного жира увеличивается, хотя общее его количество уменьшается. Кроме того, в саркоплазме вокруг ядра постоянно встречаются зернышки пигмента, обычно к старости увеличивающиеся в количестве.

По поверхности волокна покрыты очень тонкой оболочкой, выступающей на срезах в виде резко очерченной линии. Эту оболочку можно сравнивать с сарколеммой, но представляет ли она в действительности таковую, сказать трудно. Ее происхождение до сих пор точно не прослежено, поэтому одни авторы полагают, что она развивается в результате уплотнения эктоплазмы мышечных волокон, в то время как другие производят ее, как и сарколемму скелетных мышц, за счет основного вещества соединительной ткани.

На продольных разрезах сердечной мышцы обнаруживаются еще особые полоски, пересекающие в поперечном направлении отдельные мышечные перекладины. Эти полоски получили название спаивающих линий, или вставочных пластинок, или полосок.

Форма пластинок может быть различной. В большинстве, случаев они имеют форму правильной прямой линии, но встречаются пластинки, образующие уступы, что придает им вид сруктуры, построенной наподобие лестницы.

Как морфологическое, так и физиологическое значение спаивающих пластинок остается в значительной степени неясным. Если присмотреться к продольному разрезу, то можно подметить, что мышечная сеть подразделяется этими пластинками на отдельные территории (называемые иногда сегментами), в каждой из которых лежит одно, два, а иногда и больше ядер. Это обстоятельство дало повод некоторым авторам с известными к тому основаниями видеть в этих полосках клеточные границы и считать сердечную мышцу клеточным образованием.

Новейшие данные, особенно наблюдения над ростом волокон миокарда эмбрионов в культурах in vitro, когда происходит высвобождение клеточных территорий как раз по границам описываемых полосок, несомненно являются серьезным подтверждением взглядов тех авторов, которые рассматривают сердечную мышцу как клеточное образование.

Однако данные гистогенеза и само строение вставочных пластинок заставляют в этом несколько сомневаться. Вставочные пластинки появляются на поздних стадиях развития и увеличиваются в количестве к старости. Что касается строения этих пластинок, то миофибриллы проходят через них, не прерываясь, но теряют на месте полосок поперечную исчерченность.

Высказывалось предположение и о том, что вставочные пластинки являются местами роста мышечных волокон. Одно время весьма вероятной казалась гипотеза, рассматривающая вставочные пластинки как промежуточные сухожилия, благодаря которым вся мышечная сеть сердца разбивается на микроскопические функциональные элементы, мышечные сегменты.

Между мышечными волокнами миокарда, как и в соматической мускулатуре, располагается рыхлая соединительная ткань. Внутри пучков (perimysium internum) соединительнотканные прослойки состоят из очень нежной ткани ретикулярного типа (решетчатые волокна), в которой наблюдаются многочисленные щели, наполненные лимфатической жидкостью (щели Генле).

Мышечные волокна оплетены густой сетью кровеносных капилляров, имеющих такой же характер, как и в скелетных мышцах. Что касается лимфатических сосудов, то вопрос об их распределении в миокарде и об их отношении к упомянутым только что лимфатическим пространствам не может считаться разрешенным. Во всяком случае в миокарде их очень мало, а может быть, и нет совсем.

В более толстых прослойках соединительной ткани миокарда встречаются и эластиновые волокна. В миокарде предсердий их больше и они грубее, чем в миокарде желудочков, где ими образуются очень тонкие сети.

3. Производные кожи. Строение копыта.

КОЖНЫЙ ПОКРОВ И ЕГО ПРОИЗВОДНЫЕ

Строение кожи. Кожа состоит из трех слоев: эпидермиса, основы кожи и подкожного слоя.

Эпидермис - наружный слой кожи, состоит из многослойного плоского эпителия. Различают производящий слой, прилежащий к основе кожи, и роговой слой эпидермиса.

Основа кожи состоит из плотной соединительной ткани с большим количеством эластических волокон. В основе кожи различают сосочковый и сетчатый слой. Основа кожи богата кровеносными сосудами и нервами.

Подкожный слой построен из рыхлой соединительной ткани. Он соединяет основу кожи с фасциями и подкожными мышцами. Этот слой обеспечивает подвижность кожи. В подвижных местах тела в этом слое имеются или могут образовываться подкожные бурсы. У упитанных животных в этом слое разрастается подкожная жировая клетчатка.

Производные кожного покрова. Потовые железы имеют трубчатое строение и расположены в сетчатом слое основы кожи. Выводные протоки желез открываются между основой кожи и эпидермисом или в корневые влагалища волос. Железы выделяют пот, который смачивает волосы, эпидермис и предохраняет их от высыхания. У крупного рогатого скота эти железы крупнее на голове.

Сальные железы имеют сложное альвеолярное строение и залегают в основе кожи. Выводные протоки открываются в корневые влагалища волос. Выделяют секрет - кожное сало, которое смазывает корни волос и эпидермис, предохраняя их от высыхания и размягчения.

Молочные железы по строению альвеолярно-трубчатые. У коров, коз, овец и кобыл молочные железы называются выменем. На вымени различают основание, тело и соски (рис. 16). Снаружи вымя покрыто тонкой кожей, под которой лежит сначала поверх костная, а затем глубокая фасции. Глубокая фасция является поддерживающей связкой вымени и разделяет его на правую и левую половины.

У коров вымя развито очень сильно. Оно образовалось путем слияния двух пар желез. Правая и левая половины с двумя сосками каждая отделены друг от друга бороздой. В паренхиме вымени имеются две системы молочных ходов, каждая со своими сосками. Молочные протоки открываются в молочную цистерну, которая переходит в сосковый канал. Форма вымени и сосков неодинакова.

Волосы покрывают все тело животных. Различают покровные, или кроющие, волосы, шерстные, остевые щетинистые и синуоз-ные. Волосы стареют и выпадают. Этот процесс называется линькой, которая может происходить в определенное время года (у диких животных) или постоянно. У большинства домашних животных наблюдается смешанный тип смены волос.

В волосе различают: стержень, корень и луковицу. Корень и луковица заключены в фолликул, расположенный в основе кожи, которая образует сосочек волоса, внедряющийся в волосяную луковицу.

Копыто состоит из копытной каймы, копытного венчика, копытной стенки и копытной подошвы

- это узкая безволосая полоса, расположенная над венчиком. Состоит из всех трех слоев кожи. Копытный венчик лежит ниже каймы. Состоит из трех слоев кожи. Основа кожи богата кровеносными сосудами и нервами, благодаря чему венчик является органом осязания. Копытная стенка составляет среднюю и боковые поверхности копыта. Стенка копыта образо-

Строение копыта: кайма; венчик; стенки; подошва; эпидермис; основа кожи; подкожный слой; 4 - сухожилие общего пальцевого разгибателя; 5 - подкожный слой каймы; 6 - основа кожи каймы; 7 - эпидермис каймы; 8 -эпидермис венчика; 9 - глазурь стенки; 10 - трубчатый рог; 11 - листочковый рог; 12 - листочковый слой основы кожи; 13 - белая линия; 14 - эпидермис подошвы; 15 - основа кожи подошвы; 16 - надкостница; 17 - эпидермис пальцевого мякиша; 18 - основа кожи мякиша; 19 - эпидермис подушки мякиша; 20 - основа кожи подушки мякиша; 21 - подкожный слой подушки мякиша.

Только двумя слоями кожи: эпидермисом и основой, внутренний слой которой срастается с надкостницей третьей фаланги. Роговой слой стенки копыта, в свою очередь, представлен тремя слоями: глазурью (растет от каймы), трубчатым рогом (растет от венчика) и листочковым рогом (растет от стенки).

Копытная подошва, как и стенка, состоит только из двух слоев. Подкожный слой отсутствует. Граница между стенкой и подошвой называется белой линией копыта.

У рогатого скота и свиньи твердый кожный наконечник пальца -называется копытцем. По форме оно является половиной копыта лошади и сходно с ним по строению. Отличие заключается в слабом развитии копытцевой подошвы.

Мякиши - утолщение кожного покрова на задних поверхностях лап. Различают запястные и пястные мякиши, а также подошвенные и пальцевые.

У копытных сильно развит пальцевый мякиш, который состоит из всех трех слоев кожи. Эпидермис довольно толстый, с мягким роговым слоем.

Особенно сильно развит подкожный слой мякиша в виде жировой подушки, пронизанной коллагеновыми и эластическими волокнами.

У лошади пальцевый мякиш играет роль амортизатора и состоит из подушки, стрелки и хрящей мякиша.

Рога состоят из двух слоев кожи: эпидермиса и основы кожи. Эти производные кожи одевают роговые отростки лобных костей у жвачных животных. На роге различают корень, тело и верхушку. На наружной поверхности рога заметны кольца, которые образуются как результат его неравномерного роста, что связано с различным питанием.

Перо и пух. Для птиц характерно наличие пера и пуха, которые облегчают полет птиц и сохраняют постоянство температуры их тела. На пере различают стержень и опахало. В стержне имеются очин и стебель. Очин помещается в перьевой сумке кожи. От стебля отходят лучи, снабженные крючками. Различают покровные и пуховые перья. Пуховые перья лишены крючков, меньше и располагаются под покровными. Кроме этого, у птиц имеются маховые на крыльях и рулевые перья на хвосте.

№ 35

  1. Клеточные элементы рыхлой волокнистой соединительной ткани и их функциональное значение.

Строение рыхлой волокнистой соединительной ткани

Рыхлая волокнистая соединительная ткань состоит из клеток и межклеточного вещества.

Основными клеточными элементами являются фибробласты.

В этой ткани есть малоспециализированные фибробласты — крупные клетки, диаметром около 2—25 мкм.Они имеют небольшие отростки.Не обладают какой-либо функциональной активностью.

Дифференцированные фибробласты.Их размер составляет около 40-50 мкм.У них хорошо развита грануларня и гладкая эндопалзматическая сеть (ЭПС), комплекс Гольджи, митохондрии.Эти клетки секректируют белки а также не белковые секреты.

Функции фибробластов

1)Образование межклеточного вещества.Синтез эластина, протеогликанов,гликопротеинов и гликозаминогликанов.

2)Участие в процессах заживления ран и воспалительных процессах

3) Продукция цитокинов — биологически активных веществ, которые влияют на дифференцировку клеток, то есть превращения одних клеток в другие.

4)Фибробласты вырабатывают колониестимулирующий фактор гранулоцитов и макрофагов

Фибробласты не являются конечной формой.Конечной формой являются фиброциты. Они поддерживают постоянство межклеточного состава соединительной ткани.(Фибробласты образуют межклеточное вещество, а фиброциты поддерживают его постоянство).

Фибробласты — это клетки способные к движению.Они имеют под мембраной сократительные микрофиламенты. Их движение происходит по какой — либо опоре. Это могут быть волокна. Благодаря наличию сократительных филаментов, фибробласты способны превращаться в миобласты. Это клетки, у которых гипертрофировано образование сократительных микрофиламентов, поэтому эти клетки способны сокращаться также, как и мышечные клетки, то есть фуполнять их функцию.

Фиброкласты.Они разрушают межклеточное вещество соединительной ткани

(Рыхлая соединительная ткань – РСТ

Пронизывает и прослаивает все органы и ткани. Состоит из клеток и межклеточного вещества. К числу клеточных элементов относятся клетки:

1. фибробласты с нечеткими контурами и слабоокрашенным ядром. Участвуют в образовании волокнистого материала, образует преколлаген, который во внеклеточном пространстве агрегирует в фибриллярную форму.

2. гистиоциты – это отростчатые клетки с четкими границами и темноокрашенным ядром. Они передвигаются к очагам воспаления, превращаясь в макрофаги.

3. плазмоциты – ядро эксцентрично расположено. Они вырабатывают антитела в процессе иммуногенеза.

4. тучные клетки (лаброциты, базофилы) в цитоплазме этих клеток гранулы темноокрашенные, которые содержат в своем составе гепарин, гистамин, серотонин.

5. адвентициальные клетки обычно сокращают кровеносные сосуды.

В промежуточном межклеточном веществе РСТ располагаются 2 типа волокон:

1.Более толстые пучки – коллагеновые волокна или клейдающие (при разваривании дают клей – глюцин)

2.Одиночные более тонкие, ветвящиеся – эластические волокна)

  1. Строение стенки трахеи.

(4. Трахея является органом слоистого типа, и состоит из 4-х оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. Слизистая оболочка состоит из многорядного реснитчатого эпителия и собственной пластинки. Эпителий трахеи содержит такие виды клеток: реснитчатые, бокаловидные, вставочные или базальные, эндокринные. Бокаловидные и реснитчатые клетки образуют слизисто-реснитчатые (муко-цилиарный) конвейер. Эндокринные клетки имеют пирамидную форму, в базальной части содержат секреторные гранулы с биологически активными веществами: серотонин, бомбезин и другие. Базальные клетки являются малодифференцированными и выполняют роль камбия. Собственная пластинка слизистой образована рыхлой волокнистой соединительной тканью, содержит много эластических волокон, лимфатических фолликулов, и разрозненных гладких миоцитов.

^ Подслизистая оболочка образована рыхлой волокнистой соединительной тканью, в которой располагаются сложные белково-слизистые трахеальные железы. Их секрет увлажняет поверхность эпителия, содержит секреторные антитела.

^ Фиброзно-хрящевая оболочка состоит из глиальной хрящевой ткани, образующей 20 полуколец, и плотной волокнистой соединительной ткани надхрящницы. На задней поверхности трахеи концы хрящевых полуколец соединяются пучками гладких миоцитов, что способствует прохождению пищи по пищеводу, лежащему позади трахеи. Адвентициальная оболочка образована рыхлой волокнистой соединительной тканью. Трахея на нижней конце делится на 2 ветви, образуя главные бронхи, которые входят в состав корней легких. Главными бронхами начинается бронхиальное дерево. Оно подразделяется на внелегочную и внутрилегочную части.)

Трахея

это следующий за гортанью отдел дыхательной системы. Она начинается на уровне шестого шейного позвонка и оканчивается на уровне пятого грудного позвонка. Заканчивается она так называемой бифуркацией трахеи - разделением её на 2 главных бронха. Длина трахеи от 9 до 11 сантиметров.

Строение трахеи

и её топография очень сложны. Для понимания болезней человека этой области для начала необходимо рассмотреть топографию трахеи. Шейный отдел трахеи охватывается вверху щитовидной железой, сзади к ней прилежит пищевод, а по бокам располагаются общие сонные артерии. Грудной отдел трахеи прикрыт рукояткой грудины - впереди, вилочковой железой и сосудами - сзади и по бокам.

Строение трахеи. Стенка трахеи состоит из неполных хрящевых колец, которые друг от друга отделены специальными соединительнотканными связками. На задней стенке трахеи имеется также соединительнотканная перепонка (то место где кольца не смыкаются), которая также содержит пучки гладкомышечной ткани.

 Слизистая оболочка трахеи выстлана мерцательным (он же называется дыхательным, так как

содержится только в дыхательной системе) эпителием. Слизистая эта богата лимфоидной тканью и железами, которые выделяют слизь (она благоприятствует удалению из трахеи механических частиц - при кашле). Кровоснабжение трахеи осуществляется из нижних щитовидных сосудов (артерия и вена соответственно). Иннервация трахеи осуществляется веточками симпатического ствола и X парой ЧМН (черепно-мозговых нервов) - блуждающим нервом - nervus vagus, а также веточкой последнего - нижним гортанным нервом.

3. Гистологическое строение и кровоснабжение селезенки.

. Функции лимфатических узлов:

кроветворная функция заключается в антигензависимой дифференцировке лимфоцитов;

барьерно-защитная функция — неспецифическая защита от антигенов заключается в фагоцитозе их из лимфы многочисленными макрофагами и "береговыми" клетками; специфическая защитная функция заключается в осуществлении специфических иммунных реакций;

дренажная функция, лимфоузлы собирают лимфу из приносящих сосудов, идущих от тканей. При нарушении этой функции наблюдается периферический отек;

функция депонирования лимфы, в норме определенное количество лимфы задерживается в лимфоузле и выключается из лимфотока;

обменная функцияучастие в обмене веществ - белков, жиров, углеводов и других веществ.

Строение

Общее число лимфоузлов в организме человека примерно 1000, что составляет около 1 % массы тела. Их размеры в среднем равны 0,5—1 см. Лимфоузлы имеют почковидную форму, лежат регионарно по отношению к органам, группами. С выпуклой поверхности лимфоузла в него входят приносящие лимфососуды, а с противоположной стороны, которая называется воротами, выходят выносящие лимфососуды. Кроме того, в ворота лимфоузла входят артерия и нервы, а выходят вены.

Лимфоузлы являются паренхиматозными зональными органами. В них можно выделить следующие структурно-функциональные компоненты:

капсула, содержащая рыхлую волокнистую неоформленную соединительную ткань с большим количеством коллагеновых волокон. В капсуле встречаются гладкие миоциты, способствующие активному продвижению лимфы;

трабекулы, отходящие от капсулы, анастомозируя друг с другом, они образуют каркас лимфоузла;

ретикулярная ткань, заполняющая все пространство между капсулой и трабекулами;

в лимфоузле различают две зоны: периферическуюкорковое вещество, и центральную - мозговое вещество;

между корковым и мозговым веществом — паракортикальная зона или глубокая кора;

синусы — совокупность лимфососудов, по которым движется лимфа. Последовательность прохождения лимфы через лимфоузел и расположение синусов такова: приносящие лимфососуды — краевой или субкапсулярный синус — промежуточные корковые синусы — промежуточные мозговые синусы — воротный синус — выносящий лимфососуд в области ворот.

^ Корковое вещество лимфатического узла представлено скоплением лимфоидной ткани, в составе которой имеются лимфоидные фолликулы, или узелки, и интерфолликулярное плато. Лимфоидные узелкиокруглые величиной до 1 мм. Различают первичные без реактивного центра, и вторичные лимфоидные фолликулы, имеющие реактивный центр (центр размножения, светлый центр).

Первичные фолликулы состоят в основном из малых "наивных" В-лимфоцитов, связанных с ретикулярными и фолликулярными дендритными клетками. При попадании антигена протекает бласттрансформация "наивных" В-лимфоцитов, и формируются вторичные узелки. Они состоят из центра размножения и короны, или мантии, на периферии. Корона образована малыми В-лимфоцитами памяти, а также малыми "наивными" лимфоцитами костномозгового происхождения. Реактивный центр на высоте иммунной реакции подразделяется на темную и светлую зоны. Темная зона обращена к паракортикальной зоне. Здесь клетки митотически делятся, перемещаются в светлую, более периферическую зону, где находятся уже более зрелые, мигрирующие клетки. Предшественники плазмоцитов выходят из фолликула через боковые зоны короны в интерфолликулярное плато, а затем перемещаются через паракортикальную зону в мозговое вещество (в мякотные тяжи), где созревают в плазмоциты.

^ Паракортикальная зона или зона глубокой коры находится на границе коркового и мозгового вещества. Она является тимусзависимой зоной (Т-зоной) лимфоузла. Содержит преимущественно Т-лимфоциты, однако здесь обнаруживаются мигрирующие в мякотные тяжи мозгового вещества плазмоциты на разных стадиях развития. Всю паракортикальную зону можно разделить на отдельные единицы. Каждая единица состоит из центральной и периферической частей. В центре происходит бласттрансформация и размножение Т-лимфоцитов. На периферии находятся посткапиллярные вены с высоким эпителием. Через них происходит миграция лимфоцитов из крови в лимфоузел и, возможно, обратно.

^ Мозговое вещество состоит из двух структурно-функциональных компонентов: мозговых и мякотных тяжей и мозговых промежуточных синусов. Мозговые тяжи являются В-зависимой зоной. Здесь происходит созревание мигрировавших из коры предшественников плазмоцитов в плазмоциты. Накапливающиеся при иммунном ответе в мозговых тяжах плазмоциты секретируют в лимфу антитела. Снаружи к мозговым тяжам прилежат мозговые синусы.

^ Строение синусов лимфоузла

Все синусы лимфоузла представляют собой щелевидные пространства, которые выстланы эндотелием, способным к фагоцитозу. Кроме эндотелиоцитов в образовании стенки лимфатических синусов участвуют рететелиальные клетки. Они имеют отростчатую форму. При этом отростки пересекают все пространства синуса и на противоположной его стороне формируют расширения в виде площадок, которые на ряду с литоральными клетками формируют прерывистую выстилку синусов. Базальная мембрана в выстилке синусов отсутствует. Отростки рететелиальных клеток формируют трехмерную сеть, замедляющую ток лимфы, что способствует ее более полному очищению макрофагами. Сеть формируют также идущие в разных направлениях ретикулярные волокна. В синусах много свободных макрофагов и лимфоцитов, которые могут фиксироваться в сети.

^ Кровоснабжение лимфатического узла

Кровеносные сосуды входят в ворота узла. От артерий отходят капилляры в капсулу и трабекулы, а также к узелкам. В них есть поверхностная и глубокая капиллярные сети. Капиллярные сети продолжаются в венулы с высоким эндотелием, а затем в вены, которые выходят через ворота узла. В норме кровь никогда не поступает в синусы. При воспалении, травмах и других патологических состояниях подобное явление возможно.

(Селезенка — периферический орган кроветворной и иммунной систем. Кроме выполнения кроветворной и защитной функций, она участвует в процессах гибели эритроцитов, вырабатывает вещества, угнетающие эритропоэз, депонирует кровь. Развитие селезенки. Закладка селезенки происходит на 5-й неделе эмбриогенеза образованием плотного скопления мезенхимы. Последняя дифференцируется в ретикулярную ткань, прорастает кровеносными сосудами, заселяется стволовыми кроветворными клетками. На 5-м месяце эмбриогенеза в селезенке отмечаются процессы миелопоэза, которые к моменту рождения сменяются лимфоцитопоэзом. Строение селезенки. Селезенка снаружи покрыта капсулой, состоящей из мезотелия, волокнистой соединительной ткани и гладких миоцитов. От капсулы внутрь отходят перекладины — трабекулы, анастомозирующие между собой. В них также есть волокнистые структуры и гладкие миоциты. Капсула и трабекулы образуют опорно-сократительный аппарат селезенки. Он составляет 5-7% объема этого органа. Между трабекулами находится пульпа (мякоть) селезенки, основу которой составляет ретикулярная ткань. Стволовые кроветворные клетки определяются в селезенке в количестве, примерно, 3,5 в 105 клеток. Различают белую и красную пульпы селезенки. Белая пульпа селезенки — это совокупность лимфоидной ткани, которая образована лимфатическими узелками (В-зависимые зоны) и лимфатическими периартериальными влагалищами (Т-зависимые зоны). Белая пульпа при макроскопическом изучении срезов селезенки выглядит в виде светло-серых округлых образований, составляющих 1/5 часть органа и распределенных диффузно по площади среза. Лимфатическое периартериальное влагалище окружает артерию после выхода ее из трабекулы. В его составе обнаруживаются антигенпредставляющие (дендритные) клетки, ретикулярные клетки, лимфоциты (преимущественно Т-хелперы), макрофаги, плазматические клетки. Лимфатические первичные узелки по своему строению аналогичны таковым в лимфатических узлах. Это округлое образование в виде скопления малых В-лимфоцитов, прошедших антигеннезависимую дифференцировку в костном мозге, которые находятся во взаимодействии с ретикулярными и дендритными клетками. Вторичный узелок с герминативным центром и короной возникает при антигенной стимуляции и наличии Т-хелперов. В короне присутствуют В-лимфоциты, макрофаги, ретикулярные клетки, а в герминативном центре — В-лимфоциты на разных стадиях пролиферации и дифференцировки в плазматические клетки, Т-хелперы, дендритные клетки и макрофаги. Краевая, или маргинальная, зона узелков окружена синусоидальными капиллярами, стенка которых пронизана щелевидными порами. В эту зону Т-лимфоциты мигрируют по гемокапиллярам из периартериальной зоны и поступают в синусоидные капилляры. Красная пульпа — совокупность разнообразных тканевых и клеточных структур, составляющих всю оставшуюся массу селезенки, за исключением капсулы, трабекул и белой пульпы. Основные структурные компоненты ее — ретикулярная ткань с клетками крови, а также кровеносные сосуды синусоидного типа, образующие причудливые лабиринты за счет разветвлений и анастомозов. В ретикулярной ткани красной пульпы различают два типа ретикулярных клеток — малодифференцированные и клетки фагоцитирующие, в цитоплазме которых много фагосом и лизосом. Между ретикулярными клетками располагаются клетки крови — эритроциты, зернистые и незернистые лейкоциты. Часть эритроцитов находится в состоянии дегенерации или полного распада. Такие эритроциты фагоцитируются макрофагами, переносящими затем железосодержащую часть гемоглобина в красный костный мозг для эритроцитопоэза. Синусы в красной пульпе селезенки представляют часть сосудистого русла, начало которому дает селезеночная артерия. Далее следуют сегментарные, трабекулярные и пульпарные артерии. В пределах лимфоидных узелков пульпарные артерии называются центральными. Затем идут кисточковые артериолы, артериальные гемокапилляры, венозные синусы, пульпарные венулы и вены, трабекулярные вены и т. д. В стенке кисточковых артериол есть утолщения, называемые гильзами, муфтами или эллипсоидами. Мышечные элементы здесь отсутствуют. В эндотелиоцитах, выстилающих просвет гильз, обнаружены тонкие миофиламенты. Базальная мембрана очень пористая. Основную массу утолщенных гильз составляют ретикулярные клетки, обладающие высокой фагоцитарной активностью. Полагают, что артериальные гильзы участвуют в фильтрации и обезвреживании артериальной крови, протекающей через селезенку. Венозные синусы образуют значительную часть красной пульпы. Их диаметр 12-40 мкм. Стенка синусов выстлана эндотелиоцитами, между которыми имеются межклеточные щели размером до 2 мкм. Они лежат на прерывистой базальной мембране, содержащей большое количество отверстий диаметром 2-6 мкм. В некоторых местах поры в базальной мембране совпадают с межклеточными щелями эндотелия. Благодаря этому устанавливается прямое сообщение между просветом синуса и ретикулярной тканью красной пульпы, и кровь из синуса может выходить в окружающую их ретикулярную строму. Важное значение для регуляции кровотока через венозные синусы имеют мышечные сфинктеры в стенке синусов в месте их перехода в вены. Имеются также сфинктеры в артериальных капиллярах. Сокращения этих двух типов мышечных сфинктеров регулирует кровенаполнение синусов. Отток крови из микроциркуляторного русла селезенки происходит по системе вен возрастающего калибра. Особенностью трабекулярных вен являются отсутствие в их стенке мышечного слоя и сращение наружной оболочки с соединительной тканью трабекул. Вследствие этого трабекулярные вены постоянно зияют, что облегчает отток крови. Возрастные изменения селезенки. С возрастом в селезенке отмечаются явления атрофии белой и красной пульпы, уменьшается количество лимфатических фолликулов, разрастается соединительнотканная строма органа. Реактивность и регенерация селезенки. Гистологические особенности строения селезенки, ее кровоснабжения, наличие в ней большого количества крупных расширенных синусоидных капилляров, отсутствие мышечной оболочки в трабекулярных венах следует учитывать при боевой травме. При повреждении селезенки многие сосуды пребывают в зияющем состоянии, и кровотечение при этом самопроизвольно не останавливается. Эти обстоятельства могут определить тактику хирургических вмешательств. Ткани селезенки очень чувствительны к действию проникающей радиации, к интоксикациям и инфекциям. Вместе с тем они обладают высокой регенерационной способностью. Восстановление селезенки после травмы происходит в течение 3-4 недель за счет пролиферации клеток ретикулярной ткани и образования очагов лимфоидного кроветворения. Кроветворная и иммунная системы чрезвычайно чувствительны к различным повреждающим воздействиям. При действии экстремальных факторов, тяжелых травмах и интоксикациях в органах происходят значительные изменения. В костном мозге уменьшается число стволовых кроветворных клеток, опустошаются лимфоидные органы (тимус, селезенка, лимфатические узлы), угнетается кооперация Т- и В-лимфоцитов, изменяются хелперные и киллерные свойства Т-лимфоцитов, нарушается дифференцировка В-лимфоцитов.

Источник: http://meduniver.com/Medical/gistologia/119.html MedUniver)

№ 34

  1. Связь плодовых оболочек со стенкой матки, типы плацент.

Через 4-5 дней после оплодотворения зигота, продвигаясь по нйцеироводу, попадает в матку. Здесь она делится на более мелкие клетки. Через 3-4 недели в полости матки находится уже зародыш, окруженный плодными оболочками: сосудистой, мочевой и водной (рис. 123).

Рис. 123. Матка собаки с плодом: 1 - ампула; 2 - свободный рог матки; 3 - бифуркация рогов матки; 4 - тело матки; 5 - вскрытая ампула и плодовый пузырь; 6 - плацента; 7 - плодовая часть плаценты; 8 - материнская часть плаценты; 9 - амнион (вскрыт); 10 - край вскрытого аллантохориона

Сосудистая оболочка (хорион) - наружная служит для доставки питательных веществ от матери к плоду я выведения продуктов обмена плода в кровяное русло матери.

У сук сосудистая оболочка напоминает вытянутый мешок с тупо-оканчивающимися полюсами, имеет перетяжку и покрыта ворсинками. Ворсинки сосредоточены в средней части оболочки, образуя ворсинчатую зону в виде опоясывающего кольца; периферические же участки оболочки ворсинок не имеют.

Плацента сук имеет бурый или зеленоватый цвет вследствие отложения биливердина. Ворсинки плаценты глубоко врастают в толщу слизистой оболочки, прилегая к эндотелию сосудов матки. В этих местах ворсинки плотно срастаются с сильноразросшейся слизистой оболочкой, При родах связь слизистой оболочки матки с ворсинками разрушается, что ведет к разрыву кровеносных сосудов и сопровождается значительным кровотечением.

Мочевая оболочка (аллантоис) представляет мешок, в стенке которого проходят сосуды, связывающие плод с сосудистой оболочкой. Полость, образованная этой оболочкой, служит местом сбора мочи плода, попадающей сюда через мочевой проток (урахус), расположенный в пуповине. У сук эта оболочка находится между сосудистой и водной оболочками.

Самой внутренней оболочкой является бессосудистая или водная (амнион). В ее полости содержится околоплодная жидкость, являющаяся продуктом деятельности эпителия, выстилающего эту оболочку. Околоплодная жидкость дает возможность плоду свободно развиваться, являясь в то же время буфером, смягчающим удары, получаемые матерью, и имеет большое значение при родах.

Пуповина у сук имеет в длину 8-16 см и состоит из двух вен, двух артерий и мочевого протока.

Определение возраста плода. Для клинических и судебно-ветеринарных целей нередко приходится определять возраст плода. Установить возраст плода можно только приблизительно. Основным показателем возраста плода является длина от головы до корня хвоста.

Плод собаки в три недели достигает в длину 1 см; при этом в зачатках выражены все органы и хорошо заметен пупочный пузырек. Длина одномесячного плода 4-6 см; органы представлены в очертаниях экстерьерных форм. В полтора месяца длина плода в зависимости от породы колеблется от 6 до 16 см; на коже имеются отдельные волоски. В два месяца плод уже зрелый. Длина - от 8 до 20 см. Все тело покрыто волосами. Кости черепа не срослись. Зубы отсутствуют. Веки слипшиеся.

Вес плода у крупных собак равен 1-2%, а у мелких 5-7% веса матери.

Продолжительность щенности у сук 58-65 дней.

Число плодов у суки зависит от породы, содержания и кормления, но чаще бывает 6-10 щенков. Отмечены случаи рождения 18-20 щенков. У сук крупных пород в среднем число плодов значительно больше, чем у сук карликовых пород.

  1. Строение мочеточников и мочевого пузыря.

Мочеточник (ureter) выходит из ворот почки и впадает в мочевой пузырь. Предназначение мочеточника состоит в выведении мочи из почки в мочевой пузырь. Средняя длина мочеточника составляет 30 см, диаметр – около 8 мм.

Мочеточник имеет три физиологических сужения: при выходе из почки, при переходе из брюшной части в тазовую и в месте перехода в мочевой пузырь. Мочеточники, как и почки, располагаются в забрюшин-ном пространстве.

В мочеточнике выделяют три части: брюшную (pars abdominalis), тазовую (pars pelvina) и внутристеночную. Брюшная часть располагается на большой поясничной мышце.

Левый мочеточник располагается позади перехода двенадцатиперстной кишки в тощую, а правый мочеточник располагается сзади нисходящей части двенадцатиперстной кишки.

Вместе с мочеточником идут яичниковая артерия и вена у женщин и яичковая артерии и вена у мужчин. В этой части правый мочеточник лежит спереди внутренних, а левый – общих подвздошных артерий и вен. Мочеточник у женщин в тазовой части идет позади яичника, огибая с наружной стороны шейку матки, располагаясь затем между мочевым пузырем и передней стенкой влагалища. У мужчин мочеточник идет снаружи от семявыносящего протока, входя в мочевой пузырь немного ниже семенного пузырька, предварительно пересекая семявыносящий проток.

Мочеточник снаружи покрыт адвентицией (tunica adventitia), под ней располагается мышечная оболочка (tunica muscularis), имеющая два слоя в верхней части и три слоя в нижней. Внутренняя оболочка слизистая (tunica mucosa).

Мочевой пузырь (vesica urinaria) является непарным органом, в котором происходят накапливание мочи и ее дальнейшее выведение.

В мочевом пузыре выделяют следующие основные части: тело (corpus vesicae), верхушку (apex vesicae), дно (fundus vesicae) и шейку (cervix vesicae). Нижняя часть мочевого пузыря с помощью связок соединена с соседними органами и стенками малого таза.

Мочевой пузырь располагается в полости малого таза. Наполненный мочевой пузырь соприкасается с передней брюшной стенкой, возвышаясь над лобковым симфизом.

Строение стенки мочевого пузыря одинаково у мужчин и женщин. Мочевой пузырь состоит из адвенти-ции (tunica adventitia), мышечной оболочки (tunica muscularis), подслизистой основы и слизистой оболочки (tunica mucosa). На дне мочевого пузыря выделяют анатомическое образование, называемое треугольником мочевого пузыря (trigonum vesicae), углы которого образованы отверстиями мочеточников (osti-um ureteris) и внутренним отверстием мочеиспускательного канала (ostium urethrae internum).

Мочеточник- ureter, представляет собой трубку длинной 30 см. от лоханки идет за брюшиной вниз и медиально в малый таз. Там идет ко дну мочевого пузыря, прободает его стенку в косом направлении. В мочеточнике выделяют: parsabdominalis- до места его перегиба через lineaterminalis в полость малого таза и parspelvina в малом тазе. Просвет мочеточника неодинаков, имеет сужения

близ перехода лоханки в мочеточник

на границе между parsabdominalis и pelvina

на протяжении parspelvina

около стенки мочевого пузыря.

В женском тазу мочеточник идет вдоль свободного края яичника, у основания широкой связки матки ложится латерально от шейки матки, проникает в промежуток между влагалищем и мочевым пузырем. Стенка мочеточника: наружный слой- tunicaadventitia, внутренний – tunicamucosa; средний – tunicamuscularis (внутренний – продольный, наружный – циркулярный) препятствует обратному току мочи из пузыря в мочеточник. К стенкам pelvisrenalis и верхнего отдела мочеточника подходят ветви a.renalis. В месте перекреста с a.testicularis (или a.ovarica) от последнего к мочеточнику тоже отходят ветви. К средней части мочеточника подходит rr.ureterici(из a.iliacacommunis, aortae или a.iliacainterna). Parspelvina питание мочеточника осуществляется из a.rectalismedia и из aa.vesicalesinferiores. Венозная кровь оттекает в v.testicularis (или v.ovarica) и v.iliacainterna. Симпатические нервы мочеточника к верхнему отделу его они подходят из plexusrenalis; к нижней части parsabdominales из plexusuretericus, к parspelvina – из plexushypogastricusinferior. В нижней части мочеточник получает парасимпатическую иннервацию из nn.splanchnicipelvini. Мочеточник на рентгенограмме имеет вид длинной и узкой тени, идущей от почки до мочевого пузыря. Искривляется во фронтальной плоскости: в поясничной части - в медиальную сторону, в тазовой – латеральную. Иногда в поясничной части выпрямлен мочевой пузырь – vesicaurinaria – вместилище для скопления мочи (500-700 мм). Когда мочевой пузырь пуст, он целиком находится в полости малого таза позади syphysispubica, позади его отделяет от rectum у мужчин семенные пузырьки и концевые части семявыносящих протоков, у женщин -–влагалище и матка. При наполнении мочевого пузыря верхняя часть его поднимается выше лобка. Нижняя более широкая часть мочевого пузыря – дно fundusvesicae, обращенная вниз и назад по направлению к прямой кишке или влагалищу, суживается в виде шейки cervixvesicae, далее мочевой пузырь переходит в мочеиспускательный канал. Заостренный верх мочевого пузыря – apexvesicae, прилежит к нижней части передней стенки живота. Часть между верхушкой и дном мочевого пузыря носит название тела мочевого пузыря – corpusvesicae. От верхушки к пупку по задней поверхности передней брюшной стенки до ее средней линии идет lig.umbilicalemedianum. Мочевой пузырь имеет переднюю, заднюю и боковую стенки. Передняя поверхность прилежит к лобковому симфизу, отделяется от него spatiumprevesicale. У мужчин к верхней поверхности прилежат петли кишок, а у женщин -–передняя поверхность матки. Брюшина переходит с верхнезадней поверхности мочевого пузыря, у мужчин – на переднюю поверхность прямой кишки (excavatioretrovesicales), у женщин – на матку (excavatiovesicouterina). Стенка мочевого пузыря состоит: tunicaserosa, tunicamuscularis, tunicasubmucosa, tunicamucosa). В tunicamuscularis выделяют три слоя:

наружный – stratumexternum (продольный)

средний – stratummedium (циркулярный или поперечный)

внутренний - stratuminternum (продольный).

​В области мочеиспускательного отверстия находится сфинктер – m. sphinctervesicae. Tunicamucosa образует складки при пустом мочевом пузыре. В нижней части мочевого пузыря расположено – ostiumurethraeinternum. Сзади от него находятся trigonumvesicae. На углах основания треугольника расположены отверстия мочеточников – ostiaureteris. Слизистая оболочка треугольника не образует складок. Основания пузырного треугольника ограничивает складка – plicaiterureterica, расположенная между устьями обоих мочеточников. Позади этой складки имеется углубление – fossaretroureterica, увеличивающаяся по мере роста предстательной железы. Слизистая оболочка мочевого пузыря покрыта переходным эпителием. В ней заложены железы мочевого пузыря и лимфатические фолликулы.

Сосуды и нервы: стенки мочевого пузыря получают из a.vesicalisinferior – ветвь a.iliacainterna и из a. Vesicalissuperia – являющаяся ветвью a.invelicalis. В васкуляризации мочевого пузыря принимает также участие a. rectalismedia. Вены мочевого пузыря изливают кровь частью в plexusvenosusvesicalis, частью в v.iliacainterna. Иннервация пузыря осуществляется из plexusvesicalisinferior, которое содержит симпатические нервы из plexushypogastricusinferior и парасимпатические – nn.splanchicipelvini. ()

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]