Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ответы на вопросы по физике

.doc
Скачиваний:
33
Добавлен:
28.03.2015
Размер:
355.84 Кб
Скачать

1.Тепловое излучение. Гипотеза Планка. Формула Планка

 гипотеза, выдвинутая 14 декабря 1900 года Максимом Планком и

заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональную частоте ν излучения:

где h или  — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением — формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики.

Теплово́е излуче́ние — электромагнитное излучение, возникающее за счёт внутренней энергии тела[1]. Имеет сплошной спектр, максимум которого зависит от температуры тела. При остывании последний смещается в длинноволновую часть спектра. Тепловое излучение имеет нагретый металл, земная атмосфера, белый карлик[1][2].

Примером механизма, приводящего к тепловому излучению может служить тормозное излучение или ударное возбуждение атомных уровней с последующим высвечиванием. Характерной чертой является то, что при усреднении коэффициента излучения по максвелловскому распределению, начиная с энергий hν~kT, в спектре начинается экспоненциальный завал.

5. Волновые свойства частиц. Волновая функция. Формула де Бройля. Соотношение неопределенностей Гейзенберга.

Корпускуля́рно-волново́й дуали́зм (или Ква́нтово-волново́й дуали́зм) — принцип, согласно которому любой физический объект может быть описан как с использованием математического аппарата, основанного на волновых уравнениях, так и с помощью формализма, основанного на представлении об объекте как частице или системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля. В этом смысле любой объект может проявлять как волновые, так и корпускулярные свойства[1].

Волнова́я фу́нкция, или пси-функция  — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где  — координатный базисный вектор, а  — волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равнойквадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределённостей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

8.Решение уравнения Шредингера для одномерной потенциальной ямы.

Если поместить частицу в потенциальную яму, то непрерывный спектр энергий становится дискретным. Для уравнения с потенциальной энергией , которая равна нулю в интервале  и становится бесконечной в точках  и . На этом интервале уравнение Шрёдингера совпадает с . Граничные условия  для волновой функции запишутся в виде

Ищем решения в виде . С учётом граничных условий получаем для собственных значений энергии 

и собственных функций с учётом нормировки

12.Свойства собственных значений и собственных функций эрмитовых операторов. Матричное представление операторов. Коммутаторы. Математическая формулировка соотношений неопределенности.

Собственные функции эрмитового оператора, соответствующие различным собственным значениям, взаимно ортогональны. Все собственные значения эрмитового оператора действительны. Именно поэтому в квантовой механике оператор, сопоставляемый к. Этим и определяется особая роль эрмитовых операторов в физике.

Важнейшей особенностью эрмитовых операторов, обусловливающих их применение в квантовой механике, наряду с вещественностью собственных значений является полнота системы собственных функций. Это значит, что в случае дискретного спектра по собственным функциям эрмитового оператора может быть разложена любая функция состояния в обобщенный ряд Фурье. В случае непрерывного спектра разложение производится в интеграл Фурье.

Это же, конечно, в точности совпадает с тем, что делается в вариационном методе. То обстоятельство, что в случае линейного пространства J5ft и Eh являются собственными функциями и соответствующими собственными значениями эрмитова оператора Я, позволяет нам привлечь стандартные квантово-механические теоремы для дискретных собственных функций эрмитовых операторов.

Коммутатором операторов \ в алгебре, а также квантовой механике называется оператор В общем случае он не равен нулю. Понятие коммутатора распространяется также на произвольные ассоциативные алгебры (не обязательно операторные). В квантовой механике за коммутатором операторов также закрепилось название квантовая скобка Пуассона.

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ — математически формулируемый принцип квантовой теории, согласно которому запрещается существование таких состояний физической системы, в которых две динамические переменные (далее обозначаемые в общем виде А и В) имели бы вполне определенное значение, если эти переменные являются канонически сопряженными величинами. Поскольку может иметь место несколько различных пар канонически сопряженных величин, постольку можно говорить во множественном числе о соотношениях неопределенностей. Хотя соотношения неопределенностей рассматриваются в качестве принципа квантовой механики, однако его действие может быть прослежено на основе понятий классической механики. Канонически сопряженные величины представляют собою математические переменные, входящие в т. н. канонические уравнения механики (уравнения Гамильтона) и определяющие состояние механической системы в любой момент времени. В качестве канонически сопряженных переменных величин выбирают обычно обобщенные координаты q и обобщенные импульсы/”. С помощью т. н. канонических преобразований можно перейти от q тир к другим канонически сопряженным величинам Q и Р, которые могут иметь другой физический смысл.

16. Оператор полной механической энергии. Движение частиц в сферически симметричном поле.

Если U не зависит от времени, Н является оператором полной энергии.

Гамильтониан Н, не содержащий явно аргумента t, является оператором полной энергии, а выражение (V.19) - операторным уравнением для него. Поэтому, решая уравнение (V.19), находят значения энергии Е, которые может иметь система при заданных постоянных внешних полях и полях, осуществляющих взаимодействия между частицами системы.

Если оператор (11.20) или (11.21) не зависит от времени, он является оператором полной энергии.

Скобки используются для обозначения средних значений соответствующих величин; Я - оператор Гамильтона, оператор полной энергии системы.

В квантовой механике функции Гамильтона, как и всякой механической величине, соответствует некоторый линейный самосопряженный оператор Н - оператор полной энергии или, как его иначе называют, гамильтониан. Мы увидим, что этот оператор имеет в квантовой механике для определения эволюции состояния системы во времени столь же решающее значение, как функция Гамильтона в классической механике.

Это правило имеет совершенно общую значимость; в частности, оно остается верным и при том условии, что оператор Н зависит от времени ( на систему действуют переменные силы) н не является уже, вообще говоря, оператором полной энергии. Однако мы во всем дальнейшем будем предполагать его не зависящим от времени и, следовательно, соответствующим той механической величине, которую мы называем полной энергией системы.

21. Магнитный резонанс.

Я́дерный магни́тный резона́нс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

Явление ядерного магнитного резонанса было открыто в 1938 году Исидором Раби в молекулярных пучках, за что он был удостоен Нобелевской премии 1944 года [1]. В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твердых телах (нобелевская премия 1952 года).

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

22.Системы, состоящие из одинаковых частиц. Принцип Паули

   Важной особенностью микромира является не только то, что микрочастицы обладают существенно иными свойствами по сравнению с макроскопическими телами, но и то, что поведение системы микрочастиц также кардинально отличается от поведения систем, состоящих из макроскопических тел.

     Проведенное до сих пор рассмотрение относилось к случаю квантовых систем, состоящих, как правило, из одной частицы. Некоторые задачи, для которых характерно наличие не одной, а нескольких частиц, например, задача об электроне в атоме водорода или водородоподобном атоме, также были сведены к изучению движения одной частицы - электрона. В данной главе рассматривается квантово-механическое описание систем, состоящих из большого числа микрочастиц.

     Рассмотрим систему, состоящую из  частиц с массами . Обозначим координаты - ой частицы через . Под  будем понимать координаты центра тяжести частицы ; в качестве обобщенной координаты может выступать и спин частицы , а именно его проекция на выделенное направление. Будем считать, что силы, действующие между частицами, зависят лишь от мгновенных значений их координат и скоростей в данный момент времени, т.е. полагать, что запаздывающее взаимодействие отсутствует. 

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в теореме Паули (теореме о связи спина со статистикой) в 1940 г. в рамках квантовой теории поля. Из этой теоремы следовало, что волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы, в данном квантовом состоянии, может находиться только один фермион, состояние другого должно отличаться хотя бы одним квантовым числом.

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения N_p = 0,1

2.Ядерные силы. Энергия связи. Дефект массы атомных ядер.

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Длина (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.

Энергия связи (для данного состояния системы) — разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в состоянии активного покоя и полной энергией связанного состояния системы:

где  — энергия связи компонентов в системе из N компонентов (частиц),  — полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и  — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, то есть при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы. Она характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов — со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации, которая составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется в основном сильным взаимодействием. Для лёгких ядер она составляет ~0,8 МэВ на нуклон.

Дефе́кт ма́ссы — разность между массой покоя атомного ядра данного изотопа, выраженной в атомных единицах массы, и массовым числом данного изотопа.[источник не указан 55 дней] В современной науке для обозначения этой разницы пользуются термином избыток массы (англ. mass excess). Как правило, избыток массы выражается в кэВ.

5.Альфа-распад. Закон Гейгера-Нэттола

А́льфа-распа́д — вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия 4He - альфа-частицы[1]. При этом массовое число ядра уменьшается на 4, а атомный номер — на 2. Альфа-распад наблюдается только у тяжёлых ядер (атомный номер должен быть больше 82, массовое число должно быть больше 200). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Нэттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Закон Гейгера — Нэттола — закон, описывающий функциональную связь между энергией альфа-частицы и периодом полураспадарадиоактивного ядра. Открыт Г. В. Гейгером и Дж. Нэттолом в 1911 г[1].

Здесь[2]:

  •  — энергия альфа-частицы

  •  — период полураспада радиоактивного ядра

  •  — константы

Закон позволяет определить период полураспада по экспериментальным данным о энергии испускаемой при реакции частицы, например, при альфа-распаде.

8.Реакция деления тяжелых ядер. Цепные ядерные реакции.

Среди ядерных реакций особое место занимает реакция деления тяжелых ядер. Реакция деления впервые была осуществлена при бомбардировке ядер урана нейтронами. Образующиеся в результате деления продукты реакции радиоактивны. Сам процесс деления ядра сопровождается излучением нескольких (двух – трех) нейтронов, т.е. в результате реакции деления происходит лавинообразное увеличение числа нейтронов.

Распад ядра урана на два ядра – осколка сопровождается выделением большого количества энергии – примерно 200 МэВ на каждое распадающееся ядро. При делении всех ядер, содержащихся в 1 грамме урана, в миллионные доли секунды выделяется количество энергии, эквивалентное сгоранию 2,6 тонны угля.

В основе теории деления тяжелых ядер лежит капельная модель ядра, согласно которой ядро представляет собой как бы каплю заряженной жидкости. Как в капле обычной жидкости, поверхность ядра может колебаться. Ядро делится в том случае, если действие сил отталкивания между протонами превосходит силы притяжения между нуклонами. В тяжелых ядрах это возможно из-за большого числа протонов и больших размеров ядра. Напомним, что ядерные силы короткодействующие и при больших размерах ядра они не способны противостоять силам электрического отталкивания, действующим на любых расстояниях

Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении

2. 2. Фотоэффект. Гипотеза Эйнштейна. Фотон. Уравнение фотоэффекта.

Фотоэффе́ктФотоэлектрический эффект — испускание электронов веществом под действием света (или любого другогоэлектромагнитного излучения). В конденсированных (твёрдых и жидких) веществах выделяют внешний и внутренний фотоэффект.

Гипотеза Эйнштейна Свет не только излучается, но и поглощается в виде порций, квантов.

Фотоны, падая на поверхность металла, поникают на очень короткое расстояние в металл и поглощаются нацело отдельными его электронами проводимости. Они сразу же увеличивают свою энергию до значения, достаточного, чтобы преодолеть потенциальный барьер вблизи поверхности металла, и вылетают наружу.

Закон сохранения энергии позволяет написать простое соотношение, связывающее скорость фотоэлектронов с частотой поглощаемого света.

Энергия фотона после поглощения его, с одной стороны, расходуется на преодоление потенциального барьера (эта часть энергии называется работой выхода электрона из металла), а с другой стороны, частично сохраняется у электрона вне металла в виде кинетической энергии.

Фото́н— элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать в вакууме только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются буквой γ.

6. 6. Принципы квантовой механики. Уравнение Шредингера. Стационарное уравнение Шредингера.

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Установлено Эрвином Шрёдингером в 1925 году, опубликовано в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

Стационарное уравнение Шрёдингера

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда  не является функцией времени, можно записать в виде:

где функция  должна удовлетворять уравнению:

которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для  (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием макроскопических объектов, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля.

9.Прохождение частиц через потенциальный барьер.

Пусть частица, движущаяся слева направо, встречает на своем пути потенциальный барьер высоты и ширины (рис. 26.1). По классическим представлениям поведение частицы имеет следующий характер. Если энергия частицы больше высоты барьера , частица беспрепятственно проходит над барьером (на участке лишь уменьшается скорость частицы, но затем при снова принимает первоначальное значение) Если же Е меньше (как изображено на рисунке), то частица отражается от барьера и летит в обратную сторону; сквозь барьер частица проникнуть не может.

Совершенно иначе выглядит поведение частицы согласно квантовой механике. Во-первых, даже при имеется отличная от нуля вероятность того, что частица отразится от барьера и полетит в обратную сторону. Во-вторых, при Е имеется отличная от нуля вероятность того, что частица проникнет «сквозь» барьер и окажется в области, где Такое, совершенно невозможное с классической точки зрения, поведение микрочастицы вытекает непосредственно из уравнения Шредингера.

13Теория одномерного гармонического осциллятора (метод Гейзенберга).

Гармони́ческий осцилля́тор (в классической механике) — система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука):

F = -k x \,

где k — коэффициент жёсткости системы.

Если F — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором. Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором. Если трение не слишком велико, то система совершает почти периодическое движение — синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения.

Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине, торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор

17. Атом водорода. Квантование энергии. Главное квантовое число. Полиномы Лагерра. Вырождение энергетических уровней. Волновые функции атома водорода, s-, p-, d-, f-электронные облака.

Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Атом водорода имеет специальное значение в квантовой механике и релятивистской квантовой механике, поскольку для него проблема двух тел имеет точное или приближенное аналитическое решения. Эти решения применимы для разных изотопов водорода, с соответствующей коррекцией.

В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощенно рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией.

В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.

В соответствии с современной научной парадигмой фундаментальные физические теории должны быть квантовыми. Так, физическим основанием проведения квантования поля является корпускулярно-волновой дуализм материи. Возможно как построение изначально квантовых теорий, так и квантование классических моделей. Существует несколько математических методов квантования

19. Векторная модель атома. Магнитный момент атома. Атом во внешнем поле. Эффект Зеемана. Магнетон.

Векторная модель атома основана на рассмотрении векторного сложения угловых моментов электронов в атоме. Согласно этому методу, состояние с угловым моментом [ / i ( / i 1) ] 1 / 2й изображается вектором ji длиной [ / 1 ( / 1 1) ] / 2 направленным соответствующим образом. Поскольку такой угловой момент прецессирует вокруг оси z, вектор изображают лежащим на конусе при некотором произвольном, но неопределенном значении азимутального угла

В векторной модели атома главное квантовое число L отождествляется с мерой результирующего, орбитального углового момента всех электронов при их движении вокруг ядра. В двухатомной молекуле асимметрия, связанная с наличием двух ядер, нарушает постоянство L при движении электронов в поле двух ядер. При помощи этой величины различают электронные состояния молекулы.

В векторной модели атома главное квантовое число L отождествляется с мерой результирующего, орбитального углового момента всех электронов при их дв-ижении вокруг ядра. В двухатомной молекуле асимметрия, связанная с наличием двух ядер, нарушает постоянство L при движении электронов в поле двух ядер. Однако, поскольку в двухатомной молекуле имеется ось симметрии, совпадающая с линией, соединяющей ядра, компоненты орбитального углового момента вдоль оси симметрии сохраняют постоянное значение. При помощи этой величины, обычно обозначаемой Л и измеряемой в единицах А / 2я, различаются электронные состояния молекулы.

Магнитный момент атома слагается из орбитальных и собственных моментов входящих в его состав электронов, а также из магнитного момента ядра (который обусловлен магнитными моментами входящих в состав ядра элементарных частиц – протонов и нейтронов). Магнитный момент ядра значительно меньше моментов электронов; поэтому при рассмотрении многих вопросов им можно пренебречь и считать, что магнитный момент атома равен векторной сумме магнитных моментов электронов. Магнитный момент молекулы также можно считать равным сумме магнитных моментов входящих в её состав электронов.

Эффе́кт Зе́емана — расщепление линий атомных спектров в магнитном поле.

Обнаружен в 1896 г. Зееманом для эмиссионных линий натрия.

Эффект обусловлен тем, что в присутствии магнитного поля квантовая частица, обладающая спиновым магнитным моментом, приобретает дополнительную энергию ~\Delta E= -\vec{\mu}\cdot\vec{B}, пропорциональную его магнитному моменту \vec{\mu}. Приобретённая энергия приводит к снятию вырождения атомных состояний по магнитному квантовому числу ~m_j и расщеплению атомных линий.

Магнето́н Бо́ра — единица элементарного магнитного момента.

Впервые обнаружена и рассчитана в 1911 году румынским физиком Стефан Прокопиу,[1][2] величина названа в честь Нильса Бора, который самостоятельно рассчитал её в 1913 году.

В Гауссовой системе единиц магнетон Бора определяется как[3]

и в системе СИ как

где ħ — постоянная Планкае — элементарный электрический зарядme — масса электронаc - скорость света.

1.Физика атомного ядра. Строение ядра. Нуклоны.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным \hbar/2 = h/ 4\pi[сн 1] и связанным с ним магнитным моментом. Единственный стабильный атом, не содержащий нейтрон в ядре — лёгкий водород (протий). Единственный нестабильный атом без нейтронов - Гелий-2 (дипротон).[1]

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

В некоторых редких случаях могут образовываться короткоживущие экзотические атомы у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом ~Z — это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом ~N. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом ~A (~A = N + Z) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами

Нукло́ны (от лат. nucleus — ядро) — общее название для протонов и нейтронов.

С точки зрения электромагнитного взаимодействия протон и нейтрон — разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако, с точки зрения сильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности.

Нуклоны относятся к семейству барионов (группа N-барионов). Они являются самыми лёгкими из известных барионов.

6.Бета-распад. Его особенности. Нейтрино.

Бе́та-распа́д (β-распад) — тип радиоактивного распада, обусловленный слабым взаимодействием и изменяющий заряд ядра на единицу, без изменения массового числа. При этом ядро излучает бета-частицу (электрон или позитрон), а также нейтральную фундаментальную частицу с полуцелым спином (электронное антинейтрино или электронное нейтрино, соответственно). Если распад происходит с испусканием электрона и антинейтрино, он называется «бета-минус-распадом» (β−). В случае распада с испусканием позитрона и нейтрино — «бета-плюс-распадом» (β+). Кроме β− и β+-распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон и испускает электронное нейтрино. Нейтрино (антинейтрино), в отличие от электронов и позитронов, крайне слабо взаимодействует с веществом и покидает точку распада, унося с собой часть выделившейся при распаде энергии.

Нейтри́но (итал. neutrino — нейтрончик, уменьшительное от neutrone — нейтрон) — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях, и относящаяся к классу лептонов. Нейтрино малой энергии чрезвычайно слабо взаимодействуют с веществом: так, нейтрино с энергией порядка 3—10 МэВ имеют в воде длину свободного пробега порядка 1018 м (около 100 св. лет). Также известно, что каждую секунду через площадку на Земле в 1 см² проходит около 6·1010 нейтрино, испущенных Солнцем[1]. Однако никакого воздействия, например, на тело человека они не оказывают. В то же время нейтрино высоких энергий успешно обнаруживаются по их взаимодействию с мишенями

9.Ядерная энергетика. Термоядерные реакции и перспективы их использования.

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.

Термоядерная реа́кция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые, за счёт кинетической энергии их теплового движения.

11.Классификация элементарных частиц. Лептоны, адроны.

Элементарные частицы в точном значении этого термина – первичные, неделимые частицы, из которых состоит вся материя. Понятие “элементарная частица” трансформировалась по мере развития знаний о строении материи. На рубеже 19 – 20 веков мельчайшей частицей вещества (т.е. элементарной частицей) считался атом (по-гречески atomos - ”неделимый”) . В дальнейшем выявилась сложная структура атома, состоящего из ядра и электронов. В свою очередь ядра, как оказалось, также являются сложными структурами и состоят из протонов и нейтронов. В настоящее время считается, что протоны и нейтроны также состоят из более элементарных частиц – кварков. В строгом смысле именно кварки в настоящее время должны считаться элементарными частицами. Однако в современной физике термин “элементарные частицы” употребляется не в своем точном значении, а менее строго – для наименования большой группы мельчайших частиц материи, которые не являются атомами или атомными ядрами, т.е. объектами заведомо составной природы. В эту группу входят протон (p), нейтрон (n), фотон (g ), p - мезоны и другие частицы – всего более 350 частиц, в основном нестабильных. Очевидно, что при наличии такого большого числа элементарных частиц возникает необходимость их классификации.

В основу всякой классификации должен быть положен какой-то признак. Элементарные частицы принято классифицировать в основном по двум признакам: 1) по способности к различным видам взаимодействия и 2) по массе. Рассмотрим принципы такой классификации.

Лепто́ны (греч. λεπτός — лёгкий) — фундаментальные частицы с полуцелым спином, не участвующие в сильном взаимодействии. Наряду с кварками и калибровочными бозонами лептоны составляют неотъемлемую часть Стандартной модели.

адро́ны (от др.-греч. ἁδρός «крупный», «массивный»; термин предложен советским физиком Л. Б. Окунем в 1962 году[1], при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории) — класс элементарных частиц, подверженных сильному взаимодействию[2].

Адроны обладают сохраняющимися в процессах сильного взаимодействия квантовыми числами (странностью, очарованием, красотой и др.)

Процесс формирования адронов из цветных объектов — кварков и глюонов называется адронизация.

Адроны делятся на две основные группы в соответствии с их кварковым составом:

Барионы — состоят из трёх кварков трёх цветов, образуя так называемую бесцветную комбинацию[2]. Именно из барионов построена подавляющая часть наблюдаемого нами вещества — это нуклоны, составляющие ядро атома и представленные протоном и нейтроном. К барионам относятся также многочисленные гипероны — более тяжёлые и нестабильные частицы, получаемые на ускорителях элементарных частиц.

Мезоны — состоят из одного кварка и одного антикварка[2]. К мезонам относятся пионы (π-мезоны) и каоны (K-мезоны) и многие более тяжёлые мезоны.

3. Эффект Комптона

Эффе́кт Ко́мптона (Ко́мптон-эффе́кт, ко́мптоновское рассе́яние) — некогерентное рассеяние фотонов на свободных электронах. Эффект сопровождается изменением частоты фотонов, часть энергии которых после рассеяния передается электронам. Обнаружен американским физиком Артуром Комптоном в 1923 году в экспериментах с рентгеновским излучением. В 1927 Комптон получил за это открытие Нобелевскую премию по физике.

4. Теория водородоподобного атома. Постулаты Бора. Серия Бальмера.

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Се́рия Ба́льмера — одна из спектральных серий атома водорода, наблюдающаяся для переходов между вторым возбуждённым уровнем атома и вышележащими уровнями[1]. В отличие от ультрафиолетовой серии Лаймана, связанной с переходами на основной уровень, четыре первые линии серии Бальмера лежат в видимой области спектра. Серия была обнаружена в спектре Солнца[2]. Благодаря распространённости водорода во Вселенной, серия Бальмера наблюдается в спектрах большинства космических объектов.

Данная серия образуется при переходах электронов с возбужденных энергетических уровней с главным квантовым числом n>2 на второй уровень (n=2) в спектре излучения и со второго уровня на все вышележащие уровни при поглощении.

Переход с третьего энергетического уровня на второй обозначается греческой буквой α, с 4-го на 2-й — β и т. д. Для обозначения самой серии используется латинская буква H. Таким образом, полное обозначение спектральной линии, возникающей при переходе электрона с третьего уровня на второй — Hα (произносится Бальмер-альфа).

7. 7. Свойства волновой функции. Принцип суперпозиции состояний. Интерпретация волновой функции. Плотность потока вероятности.

  1. Правило нормировки: Правило выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией во всем пространстве равна единице.

  2. Импульс частицы в каждом из направлений  пропорционален первой производнойволновой функции, делённой на саму волновую функцию, а именно

              

где  — проекции импульсов на соответствующие оси координат,  — мнимая единица — постоянная Планка.

  1. Кинетическая энергия частицы  пропорциональна второй производной, иликривизне волновой функции, деленной на эту волновую функцию   .

При́нцип суперпози́ции — один из общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Пло́тность вероя́тности — один из способов задания вероятностной меры на евклидовом пространстве \mathbb{R}^n. В случае, когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины.

10.Движение частиц в периодическом поле.

В квантовой механике, частица в одномерном периодическом потенциале — это идеализированная задача, которая может быть решена точно (при некоторых специального вида потенциалах), без упрощений. Предполагается, что потенциал бесконечен и периодичен, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, и всегда существует как минимум один дефект — поверхность (это приводит к другой задаче о поверхностных состояниях или таммовских уровнях).

11. Операторы физических величин. Собственные значения и функции операторов физических величин. Уравнение на собственные значения. Вычисление средних значений.

В телефоне

14.Полиномы Эрмита.

Многочлены Эрмита — определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике.

В теории вероятностей полиномы Эрмита обычно определяются выражением:

;

в физике обычно используется другое определение:

.

Два определения, приведённые выше, не являются в точности эквивалентными друг другу; каждое из них является «отмасштабированной» версией другого

.

15. Оператор момента импульса. Квантование момента импульса. Магнитное и орбитальное квантовые числа. Полиномы Лежандра.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно — если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

Решая уравнение

находят собственные значения оператора Q. Согласно одному из постулатов квантовой механики при измерениях физической величины q, представляемой оператором Q, могут получаться только результаты, совпадающие с собственными значениями этого оператора.

Возможны состояния, для которых при измерениях некоторой величины q всегда получается одно и то же значение . О таких состояниях говорят как о состояниях, в которых величина q имеет определенное значение. Однако возможны также состояния, для которых при измерениях получаются с разной вероятностью различные собственные значения оператора Q. О таких состояниях говорят как о состояниях, в которых величина q не имеет определенного значения.

14. Полиномы Эрмита.

В теории вероятностей полиномы Эрмита обычно определяются выражением:

;

в физике обычно используется другое определение:

.

Два определения, приведённые выше, не являются в точности эквивалентными друг другу; каждое из них является «отмасштабированной» версией другого

.

18. Теория спина. Операторы спина, спиновые волновые функции.

Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен \hbar J, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия

20. Многоэлектронные атомы. Мультиплетность спектров. Множитель Ланде. Эффект Зеемана.

В атоме водорода электрон находится в силовом поле, которое создается только ядром. В многоэлектронных атомах на каждый электрон действует не только ядро, но и все остальные электроны. При этом электронные облака отдельных электронов как бы сливаются в одно общее многоэлектронное облако.

Таким образом, в многоэлектронных атомах энергия электрона зависит не только от главного, но и от орбитального квантового числа. Главное квантовое число определяет здесь лишь некоторую энергетическую зону, в пределах которой точное значение энергии электрона определяется величиной l.

Мультиплетность

        число возможных ориентаций в пространстве полного Спина атома или молекулы. Согласно квантовой механике, М. χ = 2S + 1, где S — спиновое квантовое число (См. Квантовые числа). Для систем с нечётным числом N электронов S = 1/23/25/2,... и М. чётная (χ = 2, 4, 6,...). Для них возможны дублетные, квартетные, секстетные и т. д. квантовые состояния. Если N чётно, S = 0, 1, 2,... и М. нечётная (χ = 1, 3, 5,...) — возможны синглетные, триплетные, квинтетные и т. д. состояния. Так, для систем с 1 электроном (атом Н, ион H2+S = 1/2, χ = 2) получаются лишь дублетные состояния; с 2 электронами (атом Не, молекула H2) — синглетные состояния (S = 0, χ = 1, спины электронов антипараллельны) и триплетные состояния (S = 1, χ = 3, спины электронов параллельны). Для N электронов максимальная М. (χ = N + 1) соответствует параллельному направлению их спинов.

Множитель Ланде (гиромагнитный множитель, иногда тж. g-фактор) — множитель в формуле для расщепления уровней энергии в магнитном поле, определяющий масштаб расщепления в относительных единицах. Частный случай более общего g-фактора.

3.Оболочечная и капельная модель ядра.

КАПЕЛЬНАЯ МОДЕЛЬ ЯДРА - одна из самых ранних моделей атомного ядра, предложенная Н. Бором (N. Bohr) и К. Ф. фон Вайцзеккером (С. F. von Weizsacker) и развитая Дж. Уилером (J. Wheeler), Я. И. Френкелем и др. (1935-39), в к-рой ядро рассматривается как практически несжимаемая капля жидкости чрезвычайно большой плотности. Полная масса ядра, состоящего из Z протонов и N=A-Z нейтронов (А - число нуклонов), меньше суммы масс составляющих его нуклонов на величину энергии связи, удерживающей нуклоны в ядре. Ср. энергия связи в расчёте на 1 нуклон почти для всех стабильных ядер при А>50 постоянна

Тео́рия оболо́чечного строе́ния ядра́ — одна из ядерно-физических моделей, объясняющая структуру атомного ядра. Она аналогична теории оболочечного строения атома. В оболочечной модели атома электроны наполняют электронные оболочки, и, как только оболочка заполнена, значительно понижается энергия связи для следующего электрона.

4.Естественная радиоактивность. Закон радиоактивного распада. Правила смещения.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом

Естественной радиоактивностью называется самопроизвольное превращение ядер неустойчивых изотопов одного химического элемента в ядра других химических элементов. Естественная радиоактивность сопровождается испусканием определенных частиц: альфа-, бета- излучений, антинейтрино, а также электромагнитного излучения(гамма-излучение). Естественная радиоактивность наблюдается у тяжелых ядер элементов, располагающихся в периодческой системе Д.И.Менделеева за свинцом. Существуют и легкие

радиоактивные ядра: изотоп калия 19К40 , изотоп углерода 6С14 и другие.

Обнаружено, что в природе существует три вида радиоактивности: α, β, γ. Альфа–частицы – поток ядер гелия (обозначение:или ), вылетающих со скоростью порядка из ядра. Бета–распад бывает отрицательный и положительный. Гамма–распад (жесткое коротковолновое излучение) может сопровождать α– и β– распады. Гамма–излучение – основная форма уменьшения энергии возбужденных продуктов радиоактивного превращения. Распавшееся ядро называется материнским, а образовавшееся – дочерним. Дочернее ядро может оказаться в возбужденном состоянии, и тогда его переход в основное состояние сопровождается испусканием гамма – кванта.

Правила смещения при радиоактивных распадах позволяют определить, какой новый изотоп возникнет в результате распада.

Альфа – распад.

Для альфа–распада ZXA = Z-2YA-4 + 2α4.

Альфа–распад характерен для тяжелых ядер с массовыми числами более 200 и зарядовыми числами более 82. В таких ядрах происходит образование при некоторых энергиях обособленных альфа–частиц, состоящих из двух протонов и двух нейтронов. Энергия образовавшейся альфа–частицы меньше, чем высота потенциального барьера и преодолевает она его, просачиваясь через барьер. Такое поведение частицы называется «туннельным эффектом».

Бета–распад.

Для бета–распада ZXA = ZYA + –1e0 + 0ν0.

Современная теория бета–распада основана на теории, разработанной Энрико Ферми в 1931 году. Он предположил, что протон или нейтрон могут испускать пару электрон – антинейтрино или позитрон – нейтрино,в сущности, по тому же механизму, что и при испускании фотона. Пара рождается за счет слабого взаимодействия подобно тому, как фотон рождается за счет электромагнитного взаимодействия. До того, как происходит бета–распад, в ядре нет ни электрона, ни нейтрино.

7.Искусственная радиоактивность. Ядерные превращения под действием альфа-частиц, протонов и гамма-квантов

Новый период в развитии ядерной физики начался фундаментальными открытиями. 15 января 1934 г. на заседании Парижской Академии наук Фредерик Жолио и Ирен Кюри сообщили об открытии ими нового вида радиоактивности. «Нам удалось доказать методом камеры Вильсона, — сообщали они, — что некоторые легкие элементы (бериллий, бор, алюминий) испускают положительные электроны при бомбардировке их а-частицами полония».

«Испускание положительных электронов некоторыми легкими элементами, подвергнутыми облучению а-луча-ми полония, продолжается в течение некоторого более или менее продолжительного времени после удаления источника а-лучей. В случае бора, например, это время достигает получаса».

Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением большого количества энергии. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием.

10.Физика элементарных частиц. Фундаментальные взаимодействия.

Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий или субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.

Теоретическая ФЭЧ строит теоретические модели для объяснения данных, полученных в действующих экспериментах, получения предсказаний для будущих экспериментов и разработки математического инструментария для проведения исследований такого рода. На сегодняшний день основным орудием в теоретической физике элементарных частиц является квантовая теория поля. В рамках этой теоретической схемы любая элементарная частица рассматривается как квант возбуждения определённого квантового поля. Для каждого типа частиц вводится собственное поле. Квантовые поля взаимодействуют, в этом случае их кванты могут превращаться друг в друга.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

гравитационного;

электромагнитного;

сильного;

слабого.

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено.

В физике механическая энергия делится на два вида — потенциальную и кинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия — электромагнитное, то, как оказалось, большинство этих сил — лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой.

12.Кварки. Цвет и аромат кварков. Законы сохранения

Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 5·10−18 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.