Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Анатомия бега (2010,иностр

.).pdf
Скачиваний:
426
Добавлен:
28.03.2015
Размер:
7.47 Mб
Скачать

Execution

1.Sit on the floor with your arms behind you for support and one leg outstretched. In the early stages the ankles should not have weights attached, but as you become more adept, you may wish to attach up to 10 pounds of weight incrementally to improve strength.

2.Turn the foot outward and slowly lift the leg, locked straight but not hyperextended at the knee, until it is no more than six inches off the floor. Hold for 10 seconds, then, equally slowly, lower the ankle to the ground and rest. Repeat the exercise 10 times for 10 seconds and alternate with the opposite leg. The foot position can be changed to work all the muscles of the quadriceps evenly.

Muscles Involved

Primary: vastus medialis

Secondary: rectus femoris, vastus intermedius, vastus lateralis

Soft Tissue Involved

Primary: medial collateral ligament, patellar tendon

TECHNIQUE TIP

At first this may seem difficult, which is why you should not attach weights. The upper leg may well develop a tremor when first exercised in this fashion, but as strength is acquired, this will reduce and the whole exercise becomes easier.

Running Focus

If sports medicine clinics banned runners with knee pain, they would become very lonely places! Unfortunately, too many coaches place far too much emphasis on general quadriceps development and fail to comprehend the role of the vastus medialis in stabilizing the knee and the prevention of patellofemoral pain. This is the most effective way of producing the increase in strength and power in this muscle to ward off the demon of anterior knee pain.

CHAPTER 11

ANATOMY OF RUNNING FOOTWEAR

Runners who assiduously perform the strength-training regimen outlined in chapters 5 through 9 of this book, arrange their training to conform to the basic tenets of an intelligent training program as explained in chapter 2, and take the time to perform the injury-prevention exercises described in chapter 10 can still be stymied in their efforts to improve running performance. Simply by wearing the wrong training shoes or the wrong orthotic device for his or her foot type, a runner may short-circuit his or her well-intentioned efforts to improve. This chapter endeavors to present some sound wisdom about footwear and orthotic selection by presenting an overview of how and why running shoes are constructed for particular biomechanics and how runners can choose the right footwear and orthotics for their specific needs.

Why Wear Running Shoes?

Running shoes work for running because they are designed and manufactured to meet the demands of bearing three to four times the body’s weight on impact, are designed for the biomechanics of running that are outlined in chapter 3, and are biomechanically (and, to a lesser extent, terrain) specific.

Running shoes are designed on lasts, or forms that are models of the human foot. These lasts have shapes ranging from curved to straight with variations on the degrees of the curve, which make the shoes appropriate for the various foot shapes of runners. The term last also applies to the methodology of construction. A combination-lasted shoe stitches the upper fabric underneath a cardboard heel to provide stability. A slip-lasted shoe stitches the upper directly to the midsole, ensuring flexibility. A full-board-last (cardboard from heel to toe) shoe is the most stable lasting technique but currently is almost nonexistent in shoe manufacturing.

Theoretically, curved slip-lasted shoes are designed for higher-arched, rigid feet, whereas straight combination-lasted shoes are designed for flatter, more flexible feet. Because flat feet tend to pronate (the inward rolling of the rear foot, controlled by the subtalar joint) more than higharched feet, straight-lasted shoes, with the aid of stability devices embedded in the midsole, help limit the rate and amount of pronation. Conversely, runners who underpronate should wear curved to slightly curved slip-lasted shoes, which allow the foot to generate as much pronation as possible to help aid in shock absorption.

Many runners err in choosing shoes because they do not know what foot type they have. If an underpronator trains in stability shoes, predictable injuries like calf pain, Achilles tendinitis, and iliotibial band syndrome will occur. If an overpronator trains in a cushioning-only shoe, stress injuries (including fractures) to the foot, tibia, and the medial knee likely will occur. For most runners, a qualified employee at a running specialty store can evaluate foot biomechanics, possibly by using a treadmill and a video camera, and successfully recommend multiple shoe models that, in theory, will prevent injury and provide a pleasurable ride. Occasionally, evaluating the foot becomes tricky due to motion not seen clearly by the naked eye, and a slow-motion camera may be needed to ascertain true foot movement. This is rare and usually not found in recreational runners due to lower training volume and velocity. Understand that biomechanics can change; what was once corrected may no longer be a problem, and new problems can arise.

History of 20th-Century Running Shoes

The history of the running shoe in the 20th century begins with Spalding’s introduction of the long-distance running shoe. The company outfitted the 1908 U.S. Olympic marathon team in its models, and based on observations of the marathon and the shoes’ performances, it created a line of marathon shoes in 1909. Both high-top and low-top shoes with a pure gum sole and leather uppers were “full finished inside so as not to hurt the feet in a long race.” Within five years, the gum rubber sole had been replaced by the leather sole, and the research and marketing of running shoes had begun in earnest, albeit in fits and starts.

Although Spalding continued tinkering with its running shoe models, the intrigue in running shoes sparked by the 1908 Olympic marathon in London gave way to a fascination with track spikes, particularly those manufactured by the Dassler brothers of Germany. Worn by Jesse Owens in the Munich Olympics, the spiked shoes were little more than a soft leather upper sewn to hard leather soles with permanent “nails” built into the soles to provide traction on the dirt tracks.

An interest in production of running shoes was rekindled in the United States in the mid-1960s through the mid-1970s, which ushered in the era of the running specialty business. Facing competition from the Japanese-imported Tiger running shoes, Hyde, New Balance, and Nike all began production of serious running shoes. The features of the new shoes were a higher heel, midsole cushioning material (EVA), and nylon uppers.

In some cases, the shoes were well made; in most cases, they were not. By the late 1970s, Runner’s World began lab-testing the running shoes, and the manufacturers were forced to improve the quality of their shoes or lose market share. This change in the mind-set of the companies began a period of intense competition (that still lasts today) to provide the best fit with the most cushioning, stability, and durability in a shoe that looks good.

Components of Running Shoes

This section describes the components of the running shoe and their significance for the runner. The emphasis is on finding the right shoe, from a biomechanical and a fit standpoint. One part of the equation without the other could lead to injury. When purchasing shoes, remember that the cost of the shoe does not ensure its success. For one runner, an expensive shoe may only deplete his bank account without aiding performance; for another, the shoe may be expensive and perfect. Your foot type, shape, and biomechanics determine what is best when it comes to shoes.

Upper

The upper of a running shoe (figure 11.1) is the material that covers the top and the sides of the foot. It can be made of multiple pieces of fabric sewn or glue-welded together, or it can be made of a one-piece, seamless material. All current running shoes are of human-made materials (nylons) for breathability, comfort, and weight reduction. Leather is no longer used because of its lack of breathability, nonconforming shape after repeated use, weight, and cost.

The front of the upper is referred to as the toe box of the shoe (figure 11.2). It takes its shape from the last of the shoe (the form the shoe is built on), but its style is determined by the shoe designer to meet the needs of the shoe wearer. The toe boxes of many of the shoes built recently are wider and deeper to accommodate the higher-volume feet that seem to have become more prevalent as the second running boom has corralled more recreational runners with larger frames into the sport. The midfoot of the shoe’s upper can be designed in conjunction with or independently of the lacing system (e.g., ghillie lacing) to allow for various upper fits. Occasionally, companies will attempt a nonsymmetrical lacing pattern ostensibly designed to improve the fit of the upper and remove “hot spots” (pre-blister-forming areas) from developing on the foot during running.

Figure 11.1 Lateral view of shoe: upper, midsole, and outsole.

Figure 11.2 Upper.

The design of the upper of the shoe determines the fit of the shoe—not the length of the shoe, but how the shoe envelops the foot. This is important because if the shoe fit is improper, the biomechanical needs of the runner may not be met. Only when the fit of the shoe is spot-on can the function (be it stability, motion control, or cushioning) work as designed. For example, if the fit of the upper is too baggy in the midfoot, excessive pronation can occur despite the presence of a medial support. The lack of a proper fit renders the stability device ineffective in combating the pronation it was designed to limit. Injuries can occur—in this case, tibial pain—even if a runner wears a shoe that is the correct category for his or her foot type.

This scenario often leads to disenchantment when purchasing shoes because of the confusion resulting from following the suggestions and guidelines and still not getting relief from pain. Here is a general point when purchasing shoes: If the shoe doesn’t fit your foot well, it isn’t the best shoe for you, regardless of whether its biomechanics are matched to your foot type. For example, it could be argued that for a mild overpronator, a cushioned shoe that fits perfectly is more stable than a mild stability shoe that is too roomy.

In conjunction with proper fit, a heel counter embedded in the upper material ensures a secure, mildly stable ride when running. Heel counters (figure 11.3) are hard plastic devices that stabilize the rear foot, helping the foot through the normal cycle of heel strike, midfoot stance (avoiding excess pronation), forefoot supination (the outward rolling of the forefoot), and toe-off from the smaller toes of the foot. Heel counters can be removed in shoes manufactured for underpronators, but the possibility of Achilles tendinitis is increased because of the increased movement of the calcaneus and the subsequent pulling on the Achilles tendon.

Figure 11.3 Heel counters and heel clefts.