Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_2005.doc
Скачиваний:
93
Добавлен:
27.03.2015
Размер:
1.09 Mб
Скачать

I закон термодинамики.

Химическая термодинамика базируется на двух основных законах (или началах) , называемых первым и вторым законами термодинамики. Первый закон термодинамики обычно известен как закон сохранения и превращения энергии. Он не был выведен математически и является обобщением опыта человечества:

Для изолированной системы: внутренняя энергия изолированной системы постоянна (U = 0).

Для закрытой системы: изменение внутренней энергии закрытой системы равно количеству переданной системе теплоты и свершенной над системой работы (U = Q - W).

Величины Q и W можно измерить, следовательно можно оценить изменение U.

Тепловой эффект химической реакции - это количество выделившейся или поглотившейся теплоты в ходе химической реакции. Измеряется в кДж, либо в кДж/моль.

Поскольку многие химические реакции сопровождаются выделением газа, то при этом выполняется работа расширения:

W = P·V. Если других видов работ не совершается, то первый закон термодинамики можно записать в виде:

U = Q W = Q P· V .

Возможно два случая:

а) если реакция проводится при постоянном объеме (V = const), то V = 0  и U = QV т.е. тепловой эффект химической реакции при постоянном объеме показывает изменение внутренней энергии системы;

б) если реакция проводится при постоянном давлении (P = const), то

QP = U + PV = (U + PV) = H.

Величину U + PV = H назвали энтальпией.. Энтальпия также является функцией состояния системы. Тепловой эффект химической реакции, проведенной при P = const, есть изменение энтальпии.

Если теплота выделяется в ходе реакции, то реакция называется экзотермической .  

Если теплота поглощается в ходе реакции, то реакция называется эндотермической. В ходе экзотермической реакции внутренняя энергия системы уменьшается (U<0) и Н<0. Напротив, при эндотермической реакции U>0 и Н>0.

Уравнение химической реакции, записанное с указанием значения Hр и агрегатных состояний веществ, называется термохимическим уравнением

С(к) + О2(г) = СО2(г); НР = –393 кДж

Величина НР зависит от количества вещества n(B), которое вступило в реакцию, т.е НР = –393 кДж теплоты выделяется при реакции 1 моль С с 1 моль О2 с образованием 1 моль СО2 . Если количества всех веществ увеличить в 2 раза, то и величина НР составит 2 · (–393) = –786  кДж.

Поскольку величины тепловых эффектов реакций зависят от температуры и давления, то принято приводить эти значения к стандартному состоянию. В качестве стандартного состояния для жидких и твердых тел выбрано термодинамически устойчивое физическое состояние при 298 К  и внешнем давлении 1 атм. Для газов стандартное состояние —состояние идельного газа при 298 К и 1 атм.

Тепловой эффект реакции, измеренный в этих условиях, называется стандартной энтальпией химической реакции и обозначается (298 K).

Изменением энтальпии характеризуются и химические соединения, полученные в ходе реакции. Стандартная энтальпия образования химического соединения – (В).это стандартная энтальпия такой реакции, в которой 1 моль вещества (В) образуется из простых веществ, каждое из которых находится в термодинамически устойчивом состоянии. Для простых веществ (298 K) принята равной 0.

В 1836 г. Гесс экспериментально установил, что “Тепловой эффект химической реакции, протекающей при p,T = const (или V,T = const) зависит только от вида и состояния начальных веществ и продуктов реакции, но не зависит от пути реакции и ее механизма”. Эту формулировку называют законом Гесса и он является основой термохимии. Из закона вытекают три следствия:

1) энтальпия химической реакции не зависит от числа промежуточных стадий;

2) энтальпия прямой химической реакции равна взятой с противоположным знаком энтальпии обратной химической реакции;

3) энтальпия реакции равна сумме энтальпий образования продуктов реакции – сумма энтальпий образования исходных веществ, т.е. для реакции:

nA + mB = kC + lD

(298 K) = (прод.) (исходн.) =

k·(298 K)(C) + l · (298 K)(D) (298 K)(A) m · (298 K)(B).

Второй закон термодинамики также является постулатом, обоснованным опытом человечества. Одна из его формулировок - постулат Клаузиуса (1851 г.) - гласит: “Теплота не может переходить сама собой от более холодного тела к более горячему”. С позиции 2 закона термодинамики очевидно, что самопроизвольно протекает та реакция, при которой теплота выделяется, т.е. экзотермическая реакция. Однако, в природе протекают и эндотермические процессы. В изолированной системе также могут протекать самопроизвольно процессы, например передача тепла от более нагретого тела к менее нагретому. Поэтому Клаузиусом была введена еще одна функция состояния, названная энтропией.

Изменение энтропии определяется отношением количества теплоты, полученной (или отданной) системой при температуре Т, к температуре:

S = S2 –S1 = Q/T

Из данного определения следует, что энтропия измеряется в энтропийных единицах (э.е.), имеющих размерность [Дж/моль.К]. Уравнение не раскрывает физического смысла понятия энтропии, но позволяет определить ее величину. Энтропия - это свойство, присущее любой системе, любому веществу, также как масса или объем. S зависит от количества вещества n(B) - которое претерпело изменение.

Термодинамические параметры (Р, Т, V, n) описывают систему в целом, ее макросостояние. Но система состоит из огромного числа частиц, которые непрерывно меняют энергию, координаты и т.д., т.е. в каждый момент времени каждая частица находится в микросостоянии. Макросостоянию системы соответствует множество различных микросостояний. Если даже макропараметры системы остаются неизменными, то микросостояния меняются непрерывно, но так, чтобы макросостояние не менялось. Число микросостояний, с помощью которых осуществляется макросостояние, называется термодинамической вероятностью (W). Больцман связал энтропию с термодинамической вероятностью системы соотношением:

S = k ln W,

т.е. энтропия тем больше, чем больше число микросостояний,

в которых может существовать данная система.

Данное уравнение придает физический смысл понятию энтропии.  Энтропия - мера хаотичного движения в системе, мера ее беспорядка. Беспорядок в системе обусловлен хаотичным движением (поступательным, колебательным, вращательным) ее частей. Поэтому в ряду О <О23 энтропия возрастает. Энтропия возрастает во всех процессах, сопровождающихся увеличением беспорядка, т.е. при нагревании, измельчении, увеличении объема, плавлении, растворении и т.д.

Энтропия газов значительно больше, чем энтропия жидкостей и твердых тел, поэтому в химических реакциях с участием газообразных веществ энтропия увеличивается, если число молей газа в реакции увеличивается. Что же дает нам знание об изменении энтропии в каком-то процессе?

В изолированной системе (т.е. когда Q = 0) S= 0 для обратимых процессов и S > 0 для самопроизвольных (или необратимых) процессов. Это неравенство является математическим выражением второго закона термодинамики

в изолированной системе самопроизвольно протекают те процессы, в которых энтропия возрастает.

В закрытой поскольку Q 0, то = S2  S1 = Q/T или

Т= Q

и критерий самопроизвольного процесса выражается неравенством ТS > Q. Это неравенство выражает второй закон термодинамики для закрытых систем: «в закрытой системе самопроизвольно могут протекать процессы и с увеличением и уменьшением энтропии, лишь бы ТS > Q»

Из уравнения Больцмана следует, что энтропия идеального кристалла любого вещества при 0 К равна нулю, т.к. все атомы находятся в своих узлах кристаллической решетки, движения нет, полный порядок, следовательно может существовать только одно состояние. W=1 и S=0. Данное утверждение еще называют третьим постулатом (законом) термодинамики. Оно было введено М.Планком. Поскольку стандартным состоянием считается состояние системы при 298 К и 1 атм, то изменение энтропии при переходе от 0 К до 298 К равно:

S= S(298 К)  S(0 К) = S(298 К)  0 = S0(298 К).

Значения энтропии веществ в стандартном состоянии называют стандартной энтропией и эти значения приведены в таблицах. Изменение энтропии в химических процессах, также как и энтальпия, рассчитываются по формуле:

(298 K) = S0(298 К)(прод.) S0(298 К)(исходн.)

В закрытой системе при Р,Т = соnst Qp = H, следовательно

ТS > H или H Т< 0

H называют энтальпийным фактором химической реакции -

отражает стремление системы перейти в состояние с наименьшей энергией, с выделением ее части в форме теплоты и работы. 

ТS  называют энтропийным фактором химической реакции -

характеризует противоположную тенденцию - стремление атомов к наиболее беспорядочному расположению. Таким образом, в закрытой системе самопроизвольное протекание реакции определяется конкуренцией между энтальпийным и энтропийным факторами, а также температурой реакции.

Для учета обоих тенденций была введена еще одна функция состояния  свободная энергия Гиббса. Последнее неравенство можно переписать в виде:

(H ТS) < 0

Величину H TS = G называют свободной энергией Гиббса. Критерием самопроизвольного протекания химической реакции в закрытой системе (при Р,Т = соnst) является неравенство

G < 0. Если G > 0, то самопроизвольно идет обратная реакция. Если G = 0, то система находится в равновесии и никакая реакция не идет. Температуру, при которой G = 0, называют температурой начала реакциир = Hр/Sр).

Для расчета величин G химической реакции используют:

  1. Уравнение Gр = Hр ТSр , где Hр – изменение энтальпии реакции и Sр изменение энтропии реакции.

  2. Значения стандартной энергии образования (энергии Гиббса образования) веществ (). В этом случае

= (прод.)  (исходн.)

простых веществ в их термодинамически устойчивых состояниях равны 0.  сложных веществ  это изменение энергии Гиббса в реакции образования 1 моль вещества из простых веществ, каждое из которых находится в термодинамически устойчивом состоянии. Эти величины находятся в таблицах.

3. Для температур отличных от стандартной  298 К используют формулу :

Gp(Т) = (298 K) Т(298 K).

Влияние H и S на направление реакции:

H

G

Направленность реакции

H<0

S>0

G < 0

При любой Т идет прямая реакция

H<0

S<0

G < 0 при T<TP G > 0 при T>TP

Прямая р. при T<TP и

обратная р. при T>TP

H>0

S>0

G > 0 при T<TP

G < 0 при T>TP

Прямая р. при T>TP и

обратная р. при T<TP

H>0

S<0

G > 0

При любой Т идет обратная реакция

Может ли идти реакция, если G>0. Может, но не самопроизвольно - для этого нужно затратить энергию.

Пример 2.1. Определить (СО(г)), если известны энтальпии реакций:

С(к) + 1/2О2(г) = СО(г); (СО(г)) = (1) =?

С(к) + О2(г) = СО2(г); (2) = –393,5 кДж/моль

СО(г) + 1/2О2(г) = СО2(г); (3) = –283 кДж/моль

Решение:(СО(г))=  (2) – (3) = –393,5 – (–283) = –110,5 кДж/моль.

Пример 2.2. Известно, что энтальпия реакции разложения:

MgCO3(к) = MgO(к) + CO2(г); = 115,6 кДж/моль

(MgO(к)) = –602 кДж/моль; (CO2(г)) = –393,5 кДж/моль.

Определить (MgCO3(к)).

Решение. Применим третье следствие закона Гесса.

= (MgO(к)) + (CO2(г)) (MgCO3(к)). Отсюда: (MgCO3(к)) =(MgO(к)) + (CO2(г)) = –602 + (–393,5) –115,6 = –1111,1 кДж/моль.

Пример 2.3. Определить изменение энтропии при образовании 11,2 л (н.у.) газообразного этана:

2 С(графит) + 3Н2(г) = С2Н6(г) , если

S0(C‑графит) = 5,74 Дж/моль•К; S02(г)) = 130 Дж/моль•К;

S02Н6(г)) = 229,5 Дж/моль•К.

Решение.  (298 K) = S0(298 К)(прод.) S0(298 К)(исходн.)= S02Н6(г)) 3S02(г))   2S0(C‑графит) = 229,5 3•130 2•5,74 = 173 Дж/К.

n2Н6)=V2Н6)/22,4 = 11,2/22,4 = 0,5 моль, тогда

= n2Н6)/ν2Н6)= (173)•0,5/1= 86,5 Дж/К.

Пример 2.4. Возможно ли восстановление TiO2 до свободного металла при 2500 К по схеме:

TiO2(к) + 2C(графит) = Ti(к) + 2CO(г).

Зависимостью H0 и S0 от температуры пренебречь.

(TiO2(к)) = –944 кДж/моль; (CO(г)) = –110,5 кДж/моль.

S0(TiO2(к))= 50,3 Дж/моль К; S0(C(графит)) = 5,7 Дж/моль К; 

S0(Ti(к)) = 30,6 Дж/моль К; S0(CO(г)) =197,5 Дж/моль К.

Решение. (298 K) = 2 (CO(г))  (TiO2(к)) = (‑110,5•2) (944) = =723 кДж

(298 K) = S0(Ti(к)) + 2S0(CO(г)) S0(TiO2(к)) 2S0(C(графит)) =

= 0,364 кДж/К.

Gp(2500 К) = (2500 K) Т(2500 K) = (298 K) Т(298 K) = 723 2500•0,364 = 187 кДж.

Следовательно, процесс возможен.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]