Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория эволюции.docx
Скачиваний:
66
Добавлен:
20.03.2015
Размер:
148.05 Кб
Скачать
  1. Филогенетическая концепция б. Мишлера и э. Териота

С точки зрения этой концепции, организмы группируются в виды на основании происхождения от общего предка (доказательство монофилии). Репродуктивные связи вида отходят на второй план. В качестве «предка» рассматривается не предковый вид (как в хенниговой концепции вида), а таксон с более низким таксономическим статусом: популяцию, дем, или отдельную особь.

Принятие решение о видовом статусе исследуемой группы организмов зависит от методов кладистики, а также от биологических критериев. В целом, это решение в определенной степени искусственно, так как исследователь ограничен линнеевской системой рангов.

Филогенетическое определение вида по Б. Мишлеру и Э. Териоту:

Вид — это наименьшая монофилетическая группа, которая заслуживает формального признания.

  1. Филогенетическая концепция к. Вилера и н. Плетника

Эта концепция, в отличие от концепции Мишлера и Териота, отрицает применимость к виду филогенетических критериев. Так как внутри вида отсутствуют репродуктивные барьеры, генеалогические связи между особями являются сетчатыми (токогенетическими), и описание видообразования в качестве монофилетического процесса неадекватно. Описание вида ограничивается наиболее общими параметрами:

Филогенетическое определение вида по К. Вилеру и Н. Плетнику:

Вид — это наименьшая совокупность популяций, где происходит половое размножение, или бесполых линий, которые характеризуются уникальной комбинацией состояний признаков.

  1. Эволюционная концепция вида

Предложена Э. О. Вили (Wiley) и Р. Мейденом (Mayden), на основе взглядов систематика Дж. Симпсона. Вид рассматривается как своеобразный индивидуум. Он переживает рождение, существование и гибель. Предковый вид рассматривается как «родитель» и сохраняет свой видовой статус после видообразования. Индивидуальность вида сохраняется благодаря токогенетическим связям.

Эволюционное определение вида по Э. О. Вили и Р. Мейдену:

Вид — это биологический объект, состоящий из организмов, сохраняющий свою индивидуальность во времени и пространстве, и имеющий свою собственную эволюционную судьбу и исторические тенденции.

Подвид

Подвид в биологической систематике — это либо таксономический ранг ниже ранга вида, либо таксономическая группа в таком ранге. Подвиды не могут быть определены изолированно: вид либо определяется как совсем не имеющий подвидов, либо имеет два или более подвидов, но никогда не может быть один подвид.

Организмы, принадлежащие к различным подвидам одного вида, способны к скрещиванию и производству плодовитого потомства, но они зачастую не скрещиваются в природе из-за географической изоляции или других факторов. Различия между подвидами, как правило, менее чёткие, чем между видами, но более чёткие, чем между породами или расами (расами могут быть названы различные подвиды, если они таксономически различны). Характеристики, отнесённые к подвиду, как правило, развиваются в результате географического распространения или изоляции.

Критерии

Особи одного подвида отличаются от представителей других подвидов этого вида морфологически и/или разными кодирующими последовательностями ДНК. При определении подвида отталкиваются от описания его вида.

Если две группы не скрещиваются по причине чего-либо внутренне присущего их генетическому строению (возможно, зелёные лягушки не находят красных лягушек сексуально привлекательными, или они размножаются в разное время года), то они являются разными видами.

Если, с другой стороны, две группы могут свободно скрещиваться при условии, что будет удалён какой-то внешний барьер (например, возможно, что на пути передвижения лягушек существует слишком высокий водопад для них, который они не могут преодолеть, или две популяции слишком далеки друг от друга), то они являются подвидами. Возможны и другие факторы: различия в брачном поведении, экологических предпочтениях, таких как состав почвы, и т. д.

Заметим, что различия между видами и подвидами зависят только от вероятности того, что в отсутствие внешних препятствий две популяции будут сливаться назад в одну, генетически единую популяцию. Они не имеют ничего общего с тем, насколько различными две группы кажутся для человека-наблюдателя.

Поскольку знания о конкретных группах всё время увеличиваются, классификацию видов приходится время от времени уточнять. Например, скальный конёк ранее классифицируется как подвид горного конька, но в настоящее время признано, что он является полным видом.

Виды с защитным комплексом морфологически похожи, но имеют различия в ДНК или по другим факторам.

Популяция

  1. Это совокупность особей одного вида, про занимающих определённый ареал обитания и способных к свободному скрещиванию.

  2. Это совокупность организмов одного вида, длительное время обитающих на одной территории.

  3. Это группа особей, способная к более-менее устойчивому самовоспроизводству (как половому, так и бесполому), относительно обособленная (обычно географически) от других групп, с представителями которых (при половой репродукции) потенциально возможен генетический обмен. С точки зрения популяционной генетики, популяция — это группа особей, в пределах которой вероятность скрещивания во много раз превосходит вероятность скрещивания с представителями других подобных групп. Обычно говорят о популяциях как о группах в составе вида или подвида.

Популяция является элементарное единицей эволюционного процесса.

Онтогенез

Онтогенез - индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает Рост, т. е. увеличение массы тела, его размеров, дифференцировку. Термин «О.» введён Э. Геккелем (1866) при формулировании им биогенетического закона. У животных и растений, размножающихся половым путём, зарождение нового организма осуществляется в процессе оплодотворения, а О. начинается с оплодотворённой яйцеклетки, или зиготы. У организмов, которым свойственно бесполое размножение, О. начинается с образования нового организма путём деления материнского тела или специализированной клетки, путём почкования, а также из корневища, клубня, луковицы и т.п.. В ходе О. каждый организм закономерно проходит последовательные фазы, стадии или периоды развития, из которых основными у организмов, размножающихся половым путём, являются: зародышевый (эмбриональный, или пренатальный), послезародышевый (постэмбриональный, или постнатальный) и период развития взрослого организма. В основе О. лежит сложный процесс реализации на разных стадиях развития организма наследственной информации, заложенной в каждой из его клеток. Обусловленная Наследственностью программа О. осуществляется под влиянием многих факторов (условия внешней среды, межклеточные и межтканевые взаимодействия, гуморально-гормональные и нервные регуляции и т.д.) и выражается во взаимосвязанных процессах размножения клеток, их роста и дифференцировки. Закономерности О., причинные механизмы и факторы клеточной, тканевой и органной дифференцировки изучаются комплексной наукой — биологией развития, использующей, помимо традиционных подходов экспериментальной эмбриологии и морфологии, методы молекулярной биологии, цитологии и генетики. О. и историческое развитие организмов — Филогенез — неразрывные и взаимно обусловленные стороны единого процесса развития живой природы. Первую попытку исторического обоснования О. сделал И. ф. Меккель. Проблема соотношения О. и филогенеза была поставлена Ч. Дарвином и разрабатывалась Ф. Мюллером, Э. Геккелем и др. Все связанные с изменением наследственности, новые в эволюционном отношении признаки возникают в О., но лишь те из них, которые способствуют лучшему приспособлению организма к условиям существования, сохраняются в процессе естественного отбора и передаются последующим поколениям, т. е. закрепляются в эволюции. Познание закономерностей, причин и факторов О. служит научной основой для отыскания средств влияния на развитие растений, животных и человека, что имеет важнейшее значение для практики растениеводства и животноводства, а также для медицины.

Онтогенез животных

История изучения О. животных начинается с работ древне-греческих учёных Гиппократа и Аристотеля). Начиная с конца 18 в. и в особенности в 19 и 20 вв. основное внимание было направлено на изучение зародышевого периода О. В создании науки о зародышевом развитии животных — эмбриологии — большую роль сыграли исследования отечественных биологов К. Ф. Вольфа, Х. И. Пандера., К. М. Бэра, И. И. Мечникова, А. О. Ковалевского, П. П. Иванова, А. Н. Северцова, Д. П. Филатова и др., немецких зоологов О. Гертвига и Р. Гертвига, Э. Геккеля, английского эмбриолога Ф. Бальфура и др. Зародышевый период обычно довольно четко отграничен от послезародышевого выходом зародыша из яйцевых и зародышевых оболочек, а у живородящих форм — рождением. Зародышевый период состоит из 3 этапов: дробления яйца, обособления зародышевых листков и формирования отдельных органов — органогенеза. Все многоклеточные животные на ранних стадиях развития обнаруживают сходство; это нашло отражение в биогенетическом законе. Начальный этап послезародышевого развития (ювенильный) может протекать у животных или по типу прямого развития, или по типу Метаморфоза — непрямого развития. Прямое развитие проходит без личиночных стадий, путём постепенного перехода вышедшего из яйцевых оболочек животного во взрослую форму; среди беспозвоночных оно наблюдается у гребневиков, малощетинковых червей, пиявок, некоторых насекомых, среди позвоночных — у большинства рыб, пресмыкающихся, птиц и млекопитающих. Рядом особенностей обладает присущее плацентарным млекопитающим и человеку внутриутробное развитие, при котором формирование зародыша, а затем плода происходит внутри материнского организма. Для развития с метаморфозом характерно наличие одной или нескольких личиночных стадий; среди беспозвоночных — у некоторых паразитических плоских и круглых червей, моллюсков, большинства членистоногих, среди позвоночных — у некоторых рыб и у земноводных. Личинки ведут свободный образ жизни, самостоятельно питаются и обладают специальными приспособлениями, т. н. личиночными, или провизорными, органами (например, жабры личинок стрекоз, желточный мешок мальков рыб; жабры, хвост, органы прилипания головастиков), имеющими большое значение на данном этапе О., но отсутствующими у взрослых форм. Между прямым и непрямым развитием имеется ряд переходов (например, развитие прямокрылых, клопов, тараканов). Интенсивность развития и роста организмов, помимо обусловленных наследственностью причин, зависит от питания, температуры, влажности, освещения и многих др. факторов среды, формирование видовых особенностей организма заканчивается к наступлению половой зрелости, а развитие индивидуальных признаков продолжается до конца О. У некоторых групп животных (например, у птиц) с наступлением половой зрелости в основном прекращается рост, у других (например, у рыб) рост происходит в течение всей жизни. Длительность О. колеблется у разных видов от нескольких часов или дней (некоторые насекомые, например тли) до 200 лет (например, черепахи); она не связана с уровнем их организации и систематическим положением; это — один из видовых признаков, выработанных в процессе исторического развития (см. Продолжительность жизни). Изменения, претерпеваемые организмом в пожилом и старческом возрасте, изучает Геронтология. См. также Детерминация, Зародышевое развитие, Индукторы, Индукция, Организатор.

Онтогенез растений

Зачаточные представления об О. растений имелись у античных учёных (Теофраст, Плиний Старший). Начало научному изучению О. положили в 18 в. итальянский ботаник П. Микели (1729), К. Линней (1751), И. В. Гёте (1790) и др., а затем продолжили в 19 в. швейцарский альголог Ж. Воше (1803), А. Дютроше (1834), французский ботаник Г. Тюре (1853) и др., изучавшие циклы развития водорослей и грибов; Н. И. Железнов (1840), К. Негели (1842), М. Шлейден (1842—43), В. Гофмейстер (1851), И. Н. Горожанкин (1880), В. И. Беляев (1885) и С. Г. Навашин (1898) вскрыли закономерности О. высших растений. Во 2-й половине 19 в. многие ботаники изучали зависимость протекания О. у разных групп растений от среды обитания (А. Ф. Баталин, М. С. Воронин, австрийский ботаник Ю. Визнер и др.). Роль низкой температуры для колошения озимых выявил И. Г. Гаснер (1918), Фотопериодизм открыли В. В. Гарнер и Х. А. Аллард (1920). М. Х. Чайлахян предложил (1937) гормональную теорию цветения. И. В. Мичурин (1901—35), немецкий ботаник В. Пфеффер (1904), австрийский — Г. Молиш (1929), советский — Н. П. Кренке (1940) выявили внутренние факторы О. Со 2-й половины 20 в. ведётся углублённое изучение морфологических, физиолого-биохимических и генетических основ О., изучаются проблемы его эволюции.

В О. растений различают: рост, т.е. новообразование структурных элементов, приводящее к увеличению размеров организма, его массы, развитие — процесс, в ходе которого оплодотворённая яйцеклетка или вегетативный зачаток в результате деления и дифференцировки клеток приобретает форму взрослого организма и создаёт характерные для него типы специализированных клеток, и старение — совокупность необратимых структурных и физиолого-биохимических изменений, проявляющихся в ослаблении биосинтеза и самообновлении белков, а также всех физиологических функций, что в итоге приводит к смерти организма. В О. тесно взаимодействуют разные стороны единого процесса: морфологическая, включающая морфогенез — формообразование организма в целом, органогенез — формообразование отдельных органов и гистогенез — формирование тканей; физиолого-биохимическая — совокупность физиологических и биохимических процессов, протекающих в клетках, тканях, органах и в целом растении в ходе его развития; генетическая — процесс реализации наследств. информации; экологическая — рост и развитие организма в условиях внешней среды; эволюционная — изменение всех сторон О., происходящее в длительной цепи поколений на разных этапах филогенеза. Т. о., и О. растений — продукт длительной эволюции, определяется Генотипом и выражается в последовательных сериях физиолого-биохимических процессов, обусловливающих создание морфологических структур (органов) и являющихся предпосылкой для новых таких же процессов. В зависимости от условий среды и нормы реакции организма генотип реализуется в серии Фенотипов, которые характеризуются соответствующими этапами (фенофазами), отмечающими появление новых структур.

Основная особенность О. высших растений и значительного числа видов водорослей — Чередование поколений, бесполого (Спорофит) и полового (Гаметофит). Отправной точкой для образования спорофита служит зигота, а для гаметофита — прорастающая спора. Развитие спорофита и гаметофита — совокупность процессов (у низших растений различных, у высших — составляющих упорядоченную цепь), заканчивающихся образованием тех или иных органов. У папоротникообразных, например, спорофит представлен Зародышем, кормусом, спорангием и спорой, а гаметофит — заростком, архегонием и антеридием, яйцеклеткой и сперматозоидом. У покрытосеменных гаметофит сильно упрощён. На всех этапах О. организм — целостная тесно взаимодействующая со средой система. Это определяется взаимодействием его частей как в процессе обмена веществ, так и вследствие действия фитогормонов. Переход от одного этапа О. к следующему определяется совместным действием внутренних и внешних факторов. Длительность О. варьирует у растений от 20—30 мин. (бактерии) до нескольких тысяч лет (секвойя, можжевельник, баобаб). Знание О. растений способствует их рациональному хозяйственному использованию, разработке приёмов повышения урожаев.

Филогенез

Филогенез - историческое развитие организмов, в отличие от онтогенеза — индивидуального развития организмов. Термин предложен немецким эволюционистом Э. Геккелем в 1866 году. Позднее термин «филогенез» получил более широкую трактовку — за ним закрепилось значение истории эволюционного процесса. Можно говорить о филогенезе отдельных признаков: органов, тканей, биохимических процессов, структуры биологических молекул и о филогенезе таксонов любого ранга — от видов до надцарств. Цель филогенетических исследований — реконструкция происхождения и последовательных эволюционных преобразований изучаемых структур и таксонов.

Филогенез — эволюцию в прошлом — невозможно наблюдать непосредственно, а филогенетические реконструкции невозможно проверить при помощи эксперимента. Поэтому их можно только уточнять и исправлять по мере накопления новых данных.

Неполнота палеонтологической летописи

Казалось бы, филогенез можно проследить, пользуясь данными палеонтологии, непосредственно выстраивая ряды организмов от предков к потомкам. Но палеонтологическая летопись очень неполна: число известных ископаемых видов составляет около 9 % от современного биоразнообразия и не более 3 % от биоразнообразия, существовавшего в течение 3,5 миллиардов лет истории биосферы Земли. Сведения о вымерших формах жизни представлены для разных организмов очень неравномерно. Остатки крупных животных сохраняются лучше, чем мелких. Поэтому, например, динозавры изучены несравненно лучше современных им млекопитающих. Твердые ткани — кости, панцири, раковины и т. п. — окаменевают и сохраняются лучше, чем мягкие, отпечатки которых палеонтологи находят редко. Это резко ограничивает количество признаков, доступных для сравнения вымерших форм и между собой, и с ныне живущими организмами: сравнивая только обломки костей или раковины, невозможно найти для каждой новой палеонтологической находки надлежащее место в филогенетической реконструкции. Например, еще в 1844 году были найдены какие-то окаменевшие зубчики, названные конодонтами. Эти зубчики встречаются, иногда в больших количествах, в течение длительного периода эволюции биосферы — с середины кембрийского периода до конца мелового, то есть более 400 млн. лет. Организмы, имевшие эти зубчики, вымерли примерно 70 млн. лет назад. Только в 1983 году в отложениях начала каменноугольного периода в Шотландии был найден полный отпечаток тела конодонта. Это было маленькое, около 4 см длиной животное, не имевшее скелета, плававшее при помощи хвоста, а зубчики служили ему для охоты за мелкими планктонными организмами. До этого никто не знал, кому принадлежали зубчики. Высказывались самые разные гипотезы: то их считали хитиновыми челюстями морских многощетинковых червей-полихет, то обломками чешуи осетровых рыб. Тем не менее, поскольку эволюция конодонтов не прекращалась, структура зубчиков менялась от более ранних морских осадочных пород к более поздним, и этим пользовались геологи для целей стратиграфии — определения последовательности слоев осадочных горных пород в разных пунктах их обнажения на поверхности Земли.

Чрезвычайно редки находки форм, которые можно считать переходными между вымершими или ныне существующими таксонами. Группы — родоначальники дивергировавших таксонов обычно малочисленны и их обнаружение маловероятно — это закономерность эволюции. Например, одной их таких переходных форм долгое время считался археоптерикс (первоптица). Еще в 1860 году, в Баварии, в знаменитых своими палеонтологическими находками отложениях литографских известняков у Золенгофа было найдено перо птицы. По этому перу вид был назван Archaeopteryx lithographica (по гречески — древнекрыл литографический). Литографический — потому, что ровные плиты золенгофенских отложений использовали для гравирования и печати литографий. В 1876 году, еще при жизни Ч. Дарвина, был найден полный скелет этого существа, удивительным образом сочетавшего в себе признаки пресмыкающихся и птиц. У него был длинный, состоявший из многих позвонков хвост, как у ящерицы, но на этом хвосте росли перья. У него были настоящие крылья, но на них сохранялось по три пальца, одетые чешуей и с когтями. На челюстях, в отличие от всех современных птиц, были зубы, как у пресмыкающихся.

Это небольшая, величиной с сороку, птица жила на берегу мелководной морской лагуны в юрском периоде, примерно 148—145 миллионов лет назад. Сейчас известно 7 экземпляров археоптерикса, что позволило детально изучить строение и реконструировать внешний вид.

Археоптериксу посвящена масса исследований, и до 1980-х годов его считали переходной формой между пресмыкающимися и птицами. Однако, в 1981 году в Аргентине, в отложениях конца мелового периода, были найдены птицы, названные описавшим их англичанином Уокером (C. Walker) энантиорнисами (Enanthiornithes — противоположные птицы), а из отложений конца мелового периода Монголии в 1982 году российский палеонтолог Е. Н. Курочкин описал настоящую птицу, названную им амбиортусом (Ambiortus ). За последующие 10 лет число описанных энантиорнисов увеличилось за счет находок в Китае, Монголии, Испании. При детальном их изучении выяснилось, что эти птицы по своему строению близки к археоптериксу, но и археоптерикс, и энантиорнисы не могли быть предками современных птиц, что было доказано детальным изучением строения суставов крыльев и ног. Птиц пришлось разделить на две группы — ящерохвостых (Sauriurae), к которым отнесли археоптериксов и энантиорнисов, и птицехвостых (Ornithurae) — настоящих птиц. Попутно выяснилось, что обе группы сосуществовали примерно 80 миллионов лет. Ящерохвостые вымерли в конце мела. В результате оказалось, что археоптерикс не был переходной формой между пресмыкающимися и птицами, а предки настоящих птиц неизвестны.

Трудности изучения палеонтологических находок

Второе затруднение состоит в том, что полностью изучить организацию даже одноклеточного организма технически невозможно. Изучают исторические преобразования различных подсистем организма — более или менее сложных признаков. Признаки же эволюционируют с разной скоростью — это тоже одна из закономерностей эволюции. Те из них, которые подвержены действию движущего естественного отбора, меняются быстрее тех, на которые преобладающе действует стабилизирующий отбор. В разных таксонах одни и те же признаки меняются тоже с разной скоростью. Поэтому при изучении эволюции отдельных признаков и реконструкции на их основе филогенеза таксонов зачастую оказывается, что в данный филогенетический ряд попала форма совсем из другого ряда. Например, наземных позвоночных долгое время сравнивали с двоякодышащими рыбами. И у самых примитивных четвероногих, и у двоякодышащих рыб есть легкие и трехкамерное сердце, состоящее из двух предсердий и одного желудочка. У всех других ныне живущих рыб сердце двухкамерное, а легких нет, иногда встречаются только аналогичные легким органы дыхания воздухом, но то, что это не настоящие легкие, легко устанавливается при детальном изучении их строения и расположения в теле рыбы. Только в 1930-х годах шведские палеонтологи в слоях конца девонского периода (примерно 350 миллионов лет назад) в Гренландии обнаружили скелеты кистеперых рыб и древнейших земноводных, очень похожих на кистеперых. По строению плавников, верхней челюсти, позвонков, ноздрей было доказано, что именно кистеперые рыбы, а не их более или менее близкие родственники — двоякодышащие, входящие вместе с кистеперыми в группу лопастеперых рыб, являются предками наземных позвоночных. До сих пор время от времени публикуются исследования, авторы которых пытаются доказать близкое родство амфибий и двоякодышащих, но большинство ученых придерживается мнения, согласно которому девонская кистеперая рыба эустеноптерон и практически современная ей самая примитивная из ископаемых амфибий ихтиостега определяют направление филогенеза, приведшее к возникновению наземных позвоночных.

Таким образом, данные палеонтологии не позволяют с достаточной полнотой и точностью реконструировать филогенетические связи не только ископаемых, но и современных форм жизни.

Метод тройного параллелизма

Немецкий эволюционист, сподвижник Ч. Дарвина Эрнст Геккель понял это еще в 60—70 годах 19 века. Он первым поставил задачу реконструкции процесса эволюции, приведшего к возникновению современного биоразнообразия. Он же сформулировал и «метод тройного параллелизма» — основной метод филогенетических реконструкций, который в модифицированном и дополненном виде применяется и теперь. В первоначальном виде этот метод подразумевал сопоставление данных сравнительной анатомии взрослых современных организмов, сравнительной эмбриологии и палеонтологии.

Возможности палеонтологии видны из предыдущего изложения. Однако, пользоваться палеонтологическими данными можно только тогда, когда они соотнесены с современными формами жизни. Лишь в этом случае становится понятным, какое значение для реконструкции филогенеза имеет тот или иной обломок кости, раковины или панциря. История изучения конодонтов достаточно наглядно это иллюстрирует. Кроме того, палеонтологические данные дают шкалу времени. Если находка ихтиостеги относится к концу девонского периода, то это значит, что земноводные возникли не позднее конца этого периода. Может быть, раньше, но не позже.

Значение данных сравнительной анатомии

Роль сравнительной анатомии состоит в том, что она позволяет изучать не только скелеты, но и мягкие ткани. Это значительно расширяет круг сравниваемых признаков и, тем самым, делает сравнение более надежным. Например, у земноводных сердце трехкамерное — два предсердия и один желудочек. У пресмыкающихся — черепах, ящериц и змей — есть межжелудочковая перегородка, но она не полностью разделяет желудочек сердца. В результате артериальная кровь от легких и венозная кровь от остального тела перемешиваются, хотя и не так сильно, как у земноводных. Однако все органы пресмыкающихся все равно снабжаются смешанной кровью, лишь наполовину обогащенной кислородом. У птиц и млекопитающих перегородка полностью оделяет друг от друга правый и левый желудочки. При этом у птиц артериальная кровь из легких поступает в правый желудочек, а у млекопитающих — в левый. На основании такого сравнения уже можно сказать, что организация пресмыкающихся выше, чем у земноводных, у птиц и млекопитающих она выше, чем у пресмыкающихся, но птицы и млекопитающие возникли от рептилий независимо друг от друга.

Конечно, по одному органу, даже такому важному, как сердце, сравнительно-анатомический анализ родственных связей недостаточен. Однако анатомия, одна из старейших биологических наук, накопила огромное количество фактических данных, позволяющее

проводить сравнение по очень многим признакам и в очень широких пределах: от сравнения между таксонами высокого ранга (например, классами хордовых до сравнения видов одного рода. Однако, сами по себе сравнительно-анатомические исследования дают очень приблизительную картину филогенеза. Они позволяют сказать, какие из современных форм продвинулись по пути эволюции дальше, а какие эволюционировали медленнее, и дать оценку степени родства между современными таксонами. Эта оценка неизбежно бывает неполной и неточной по двум причинам. Во-первых, общие предки современных таксонов, как правило, неизвестны, а сами таксоны, особенно ранга семейства и выше, дивергировали настолько, что между ними невозможно установить непрерывные ряды преобразования морфологических структур. Во-вторых, коль скоро сами морфологические структуры эволюционируют с разными скоростями, ряд, выстроенный по одному или немногим признакам, отражая филогенез признаков, далеко не обязательно отражает филогенез организмов, обладающих этими признаками, а тем более, филогенез таксонов, к которым принадлежат эти организмы.

Неравномерность темпов эволюции подсистем организма называется мозаичностью эволюции, или гетеробатмией. Примером гетеробатмии может служить организация археоптерикса, сочетающая наличие перьев — эволюционно продвинутый, «птичий» признак и зубы на челюстях — эволюционно примитивный, «рептильный» признак.

Таким образом, сравнительно-анатомический подход позволяет построить ряд современных форм, располагая их в порядке эволюционной примитивности — продвинутости, и, тем самым, наметить направление эволюции. Позволяет он оценить и степень родства, а тем самым высказать предположение о наличии более или менее отдаленных общих предков у сравниваемых групп. При этом данные по филогенезу отдельных признаков оказываются более надежными, чем реконструкции филогенетических отношений таксонов, выполненные на основе изучения этих признаков. Данные палеонтологии, как уже сказано, вносят в эти реконструкции шкалу времени и дополняют ее вымершими формами, то есть делают ряды более подробными, а тем самым более надежными.

Значение данных эмбриологии

Третья параллель, предложенная Геккелем — данные сравнительной эмбриологии. Возможность их использования основана на явлении рекапитуляции. Действительно, в онтогенезе потомков довольно часто повторяются признаки, свойственные их предкам. Примером рекапитуляции может служить закладка жаберных щелей в эмбриогенезе всех высших позвоночных — пресмыкающихся, млекопитающих и птиц. Жаберные щели возникают и затем рассасываются в раннем развитии этих животных. Они нужны для того, чтобы сформировались кровеносные сосуды головы — сонные артерии и яремные вены, произошедшие от жаберных артерий и вен. Эта рекапитуляция подтверждает происхождение пресмыкающихся от земноводных, у которых жабры функционируют на стадии личиночного развития. Таким образом, эмбриологические данные дополняют и делают более достоверными реконструкции филогенеза.

Ограничение метода тройного параллелизма

Настоящие трудности возникают тогда, когда не удается использовать данные какой-либо из этих трех параллелей. Например, палеонтологам известно около 17 семейств бесчелюстных — предков современных миног и миксин. Эта ветвь эволюции низших позвоночных возникла в конце кембрийского периода и в ископаемом состоянии неизвестна с конца девонского периода. Более близкие предки миног и миксин не найдены, но строение ископаемых изучено не хуже, чем строение многих современных животных. Дело в том, что у ископаемых бесчелюстных обызвествлялись жаберные полости, полость головного мозга, стенки многих крупных кровеносных сосудов и других внутренних органов. Поэтому можно утверждать, что «работают» и сравнительно-анатомическая и палеонтологическая параллели. Однако, данных эмбриологии нет, и ученые до сих пор не могут придти к единому мнению о родственных связях между ископаемыми бесчелюстными и о предках современных форм. Не прекращаются дискуссии о происхождении типов царства животных. В этом случае работает только сравнительная анатомия и в очень необходимой степени — эмбриология. Дивергенция типов началась, по-видимому, в кембрийском периоде, то есть свыше 500 млн. лет назад.

Недостатки метода тройного параллелизма заставили искать и новые «параллели», дополняющие те, которые предложил Геккель, и новую методологию построения родословных «деревьев». «Деревьев» потому, что эволюция дивергентна: исходный таксон обычно бывает родоначальником нескольких или многих дочерних таксонов. Немецкий эволюционист Г. Хенниг в 1966 году предложил простое решение вопроса. Для того, чтобы определить момент дивергенции двух линий филогенеза, достаточно найти два признака: один, свойственный обеим линиям и их предкам (этот признак называется плезиоморфным, древним), другой, свойственный только потомкам, — апоморфный, или новый признак. Соотношение этих признаков дает точку дивергенции и последовательность ответвления дочерних таксонов.

Кладистический метод

Широкое распространение компьютерной техники облегчило такой анализ, и кладограммы (от греч. «klados» — ветвь) стали появляться в большинстве филогенетических публикаций. Однако очень скоро выяснилось, что оценка родственных связей таксонов зависит от того, какие признаки выбирают в качестве апоморфоных и плезиоморфных. Проблема заключается в том, что признаки, которыми пользуются разные исследователи, не равноценны по своему значению, и нет общего правила, пользуясь которым, можно было бы выбрать наиболее информативные в филогенетическом отношении черты организации изучаемых групп.

Сказанное не означает, что кладистические методы хуже традиционных. Для слабо изученных групп, где выбор признаков невелик, подобные исследования дают подчас принципиально новые результаты. Например, при исследовании структуры нуклеиновых кислот у различных групп бактерий, удалось выявить архебактерии — наиболее примитивные и наиболее древние прокариоты.

Данные молекулярной биологии

Исследование структуры нуклеиновых кислот и других макромолекул стало в настоящее время одним из важнейших дополнений к методу тройного параллелизма. Реконструкции филогенеза, основанные на сравнении последовательности нуклеотидов в хромосомной или митохондриальной ДНК, аминокислотной последовательности в молекулах цитохромов и других белков, часто не совпадают с реконструкциями, основанными на традиционных подходах, но иногда это несовпадение указывает на необходимость пересмотреть существующие взгляды. Например, по последовательности аминокислот в хорошо изученном белке цитохроме c было показано, что черепахи ближе к птицам, чем к другим современным пресмыкающимся. Это можно было бы принять за ошибку, если бы в 1983 году М. Ф. Ивахненко не доказал на палеонтологическом материале, что черепахи произошли от амфибий независимо от всех остальных пресмыкающихся.

Данные молекулярной биологии — не единственная дополнительная параллель к методу тройного параллелизма. В филогенетических исследованиях используют любые данные, позволяющие уточнить и проверить существующие реконструкции.

Например, рыбы удаляют конечные продукты азотного обмена в основном в виде аммиака (NH3). Аммиак хорошо растворим в воде и выделяется главным образом через жабры. Накапливать в организме аммиак нельзя — он ядовит. У наземных позвоночных жабер нет, поэтому у них сформировалась сложная система ферментов, превращающая аммиак в мочевую кислоту (птицы, многие пресмыкающиеся) или в мочевину (взрослые земноводные, многие млекопитающие), которые выводятся из организма через почки. Земноводные на стадии личинки, живущей в воде, выделяют аммиак, который выводится через жабры. На стадии метаморфоза включается система ферментов, синтезирующих мочевину, и эта система функционирует затем в течении всей жизни животных. Эта физиолого-биохимическая рекапитуляция может служить еще одним доказательством происхождения земноводных от рыб. Однако, пожалуй, важнее то, что она показывает, каким путем шло приспособление позвоночных животных к жизни на суше.

Заключение

Таким образом, знания о филогенезе животных и растений — филогенетические реконструкции — уточняются и верифицируются очень медленно и постепенно. Общая картина филогенеза этих двух царств воссоздана. Уточнение выражается в том, что реконструкции становятся все более подробными. От установления родства на уровне классов ученые переходят к реконструкции филогенетических связей на уровне отрядов, семейств, иногда даже родов и видов. Однако, филогенез беспозвоночных животных в целом исследован гораздо менее полно, чем позвоночных. Это объясняется, во-первых, их несравненно большим биологическим разнообразием, а, во-вторых, тем, что далеко не все беспозвоночные обладали хорошо развитым скелетом, а многие из них, особенно насекомые — животные мелкие. Поэтому палеонтологических данных, относящихся к этим группам, недостаточно.

У читателей может возникнуть законный вопрос: для чего нужны реконструкции филогенеза? Почему ученые многих стран мира уже более 150 лет кропотливо перебирают признаки современных и вымерших животных, по крупицам собирая аргументы за и против существующих реконструкций, спорят о значении тех или иных признаков и, в конце концов, договариваются о том, что, например, земноводное Dophesherpeton , жившее в начале юрского периода, может претендовать на то, чтобы считаться предком бесхвостых амфибий? На этот вопрос можно отвечать по-разному.

С одной стороны, изучение филогенеза является самоцелью. Если в окружающем нас мире есть что-то неизвестное, то задача науки — изучить и объяснить это неизвестное, независимо от теоретического и практического значения предмета изучения.

С другой — история эволюции живых существ не менее важный предмет изучения, чем, например, изучение геологической истории нашей планеты. Историческая геология и филогенетика — наука о филогенезе — тесно связаны между собой. Остатки ископаемых организмов служат целям стратиграфии — периодизации и датировке осадочных пород земной коры. Без выяснения родства и происхождения этих ископаемых остатков данные стратиграфии ненадежны.

Кроме того, филогенетические реконструкции являются основой, на которой выясняются закономерности эволюции. Эволюция — медленный процесс, длящийся сотни тысяч, миллионы и даже десятки миллионов лет. Человеку не дано непосредственно наблюдать возникновение видов, а тем более — новых крупных таксонов. Только на основе филогенетических реконструкций можно было выявить неравномерность темпов эволюции. Причины рекапитуляции тоже нельзя изучать, не зная путей исторического развития организмов. Дивергентность эволюции можно выявить и на основе изучения микроэволюционных процессов. Однако, явление адаптивной радиации — одновременное (в геологическом времени) возникновение многих ветвей филогенеза, возникающее при освоении организмами новых сред обитания, — можно выявить, только изучая филогенез. Существует еще много и других закономерностей эволюции, которые были обнаружены благодаря филогенетическим исследованиям.

Наконец, надо вспомнить, что все современное биоразнообразие, включая и Homo sapiens , сформировалось в процессе эволюции, и каждый современный вид представляет собой концевую веточку филогенеза своих предшественников. Другими словами, филогенетические исследования показывают место человека и других существ в потоке эволюционного развития жизни.

Соотношение онтогенеза и филлогенеза

Теория зародышевого сходства К. Бэра. Большой вклад в изучение взаимосвязи онтогенеза и филогенеза внес академик К.Бэр. К. Бэр является основоположником современной эмбриологии. Основной труд Бэра носит заглавие: "О развитии животных. Наблюдения и размышления". К. Бэром сформулирован закон зародышевого сходства, согласно которому зародыши различных позвоночных животных на ранних этапах эмбрионального развития очень сходны. Он показал, что у зародышей в процессе развития возникают вначале общие признаки типа, далее появляются признаки класса, позже – отряда, семейства, рода, вида и, наконец, индивидуальные признаки.

Закон зародышевого сходства К. М. Бэра сыграл большую роль в создании Ч. Дарвином эволюционной теории, поскольку Ч. Дарвин считал этот закон одним из доказательств общности происхождения животного мира.

Представления Мюллера об изменениях индивидуального развития. В 1864 г. Ф. Мюллер сформулировал мысль, что филогенетические преобразования связаны с онтогенетическими изменениями и что эта связь проявляется двумя различными путями. В первом случае индивидуальное развитие потомков идет аналогично развитию предков лишь до появления в онтогенезе нового признака. Изменение процессов морфогенеза потомков обусловливает то, что их эмбриональное развитие повторяет историю предков лишь в общих чертах. Во втором случае потомки повторяют все развитие предков, но к концу эмбриогенеза добавляются новые стадии, в результате чего эмбриогенез потомков удлиняется и усложняется. Повторение признаков взрослых предков в эмбриогенезе потомков Ф. Мюллер назвал рекапитуляцией.

Работы Мюллера послужили основой для формулировки Э. Геккелем биогенетического закона, согласно которому онтогенез есть краткое и быстрое повторение филогенеза. Таким образом, онтогенез представляет собой известное повторение (рекапитуляцию) многих черт строения предковых форм: на ранних стадиях развития – более отдаленных предков, на более поздних стадиях развития – более близких форм. Принцип рекапитуляции является всеобщим и проявляется в онтогенезе на различных уровнях организации живого (молекулярном, клеточном, тканевом, органном и организменном), у растений и животных. Рекапитуляции довольно сложны и многообразны (морфологические, физиологические, биохимические). Зародыш человека на ранних стадиях развития похож на зародыш рыб, амфибий, на более поздних стадиях – на зародышей других млекопитающих, на самых поздних стадиях – на плод человекообразных обезьян. Костистые рыбы значительную часть азота выделяют в виде аммиака, а наземные позвоночные – в форме мочевины и мочевой кислоты. Головастики лягушки и других земноводных выделяют значительную часть азота в виде аммиака, а в конце метаморфоза лягушка начинает выделять большую часть азота в виде мочевины. Развивающийся зародыш курицы вначале выделяет азот в виде аммиака, затем – мочевины и в конце развития – в виде мочевой кислоты. Учение о рекапитуляции разработано применительно к морфологическим особенностям животных. В целом у растений рекапитуляция проявляется более слабо из-за ограниченности эмбриональных дифференцировок. Примером рекапитуляции у растений служит то, что семядоли у двудольных растений дают начало цельным листьям, а затем появляются так называемые настоящие листья.

Биогенетический закон основан на большом фактическом материале. Факты, отражающие повторение в онтогенезе этапов филогенеза, можно разделить на три основные группы:

Повторение в онтогенезе общего пути филогенеза от простого к сложному. Например, в филогенезе и в онтогенезе развитие начинается с одной клетки и завершается сложно дифференцированными многоклеточными организмами.

Повторение в онтогенезе потомков общих особенностей строения предков. Например, все эмбрионы наземных позвоночных на определенных этапах имеют жаберные щели и другие сходные черты с далекими предками. Так в ходе эмбриогенеза современной лошади закладывается трехпалая конечность, как у далеких предков, которая затем превращается в однопалую.

Повторение в онтогенезе потомков конкретных особенностей индивидуального развития предков. Например, у беззубых китов на определенных этапах онтогенеза закладываются, а затем дегенерируют зубы, имевшиеся у их наземных предков.

Однако, онтогенез не является абсолютным повторением филогенеза. Так, зародыш человека никогда не повторяет взрослых стадий рыб, амфибий и рептилий, а сходен только с их зародышами. Ранние стадии эмбриогенеза отличаются консервативностью, что обеспечивает сохранение значительного сходства зародышей филогенетически далеких, но родственных форм. Возможность сохранения в эмбриональном развитии предковых структур определяется тем, что они играют прямую или косвенную роль при формообразовании в онтогенезе. Так, хорда у позвоночных служит индуктором формообразовани развивающегося зародыша. Предпочка у птиц играет такую же роль в закладке настоящих почек. Кроме того, в процессе онтогенеза организм может приобретать признаки, которых не имели его предки или, напротив, их утрачивать. В этой связи биогенетический закон следует уточнить. В процессе онтогенеза могут и не повторяться особенности соответствующих стадий развития предковых форм.

Учитывая большое разнообразие онтогенетических явлений, принята следующая классификация их:

  • палингенезы – признаки повторения организации предков;

  • ценогенезы – эмбриональные приспособления, или эмбриоадаптации;

  • гетеротопии – смещения органов по месту закладки;

  • гетерохронии – смещение органов по времени закладки;

  • филэмбриогенезы – новообразования у зародышей, являющиеся материалом для новых направлений эволюционного процесса. Филэмбриогенезы, в отличие от ценогенезов, оказывают решающее влияние на строение взрослых форм.

Палингенез - признак или процесс в эмбриогенезе организмов, повторяющий соответствующий признак или процесс филогенеза данного вида. Термин «Палингенез» предложен Э. Геккелем (1866) в концепции биогенетического закона. Примеры палингенеза (по Геккелю): развитие у зародышей высших позвоночных экто- и энтодермы, нервной трубки, хорды, жаберных дуг и щелей, органов выделения, которые были свойственны их взрослым предкам и имеются у взрослых особей низших хордовых и низших позвоночных. Палингенез позволяют делать заключения о направлении филогенетических изменений. Последовательность палингенеза, согласно Геккелю, нарушают ценогенезы.

Ценогенез или ценогенетическое развитие — термин, введенный Геккелем для отличия в эмбриологии явлений вторичного характера от явлений первичного характера, знаменующих собой палингенез или палингенетическое развитие. Явления последней категории представляют собой повторение процессов, происходивших при развитии вида в силу филогенетического закона, а явления первой категории представляют позднейшее приспособление к условиям развития и в силу общего стремления организмов к сокращению развития. К числу явлений ценогенетических надо отнести случаи так назыв. гетерохронии и гетеротопии. Под первым наименованием подразумевается перенесение времени появления зачатка из одной стадии в другую, т. е. или более раннее, или более позднее его появление, по сравнению с тем, что мы можем предполагать у предков. Так, при развитии позвоночных спинная струна, или хорда, появляется раньше нервной системы, но у предков позвоночных последовательность появления этих органов, естественно, была обратной, ибо нервная система — орган, свойственный почти всем Metazoa, а хорда — только хордовым. Если обратимся, напр., к развитию конечностей позвоночных, то увидим, что во всех случаях, когда эти конечности имеют число пальцев менее пяти, все-таки залагается их первоначально пять, так что основной факт развития стоит в полном согласии с филогенетическим законом. Но, в то же время, косточки тех пальцев, которые должны редуцироваться, или делаются хрящевыми позже других, или вовсе не превращаются в хрящевые. Таким образом, в дальнейшем развитии преобладающей особенностью является более раннее развитие тех частей, которые наиболее прогрессировали. Все такие явления соединяются под именем гетерохронии, причем этот термин прилагается как к нормальному развитию, так и к аномалиям. Так известен, напр., случай, когда 6-летний мальчик, рост коего не превышал 1,62 м, имел бороду и был зрелым в половом отношении. Под именем гетеротопии разумеется наблюдаемое иногда как в нормальных, так и в ненормальных случаях перенесение зачатка из одной части организма в другую, т. е. или из одного эмбрионального пласта в другой, или в иную часть того же самого пласта. Перенесение зачатков из одного пласта в другой — явление крайне редкое и, при нормальном развитии имеющее место лишь в случае возникновения нового пласта. О нем можно говорить при возникновении, напр., среднего пласта. Так, напр., мы видим, что половые и некоторые другие зачатки, находящиеся у кишечно-полостных в экто- или энтодерме, по мере дифференцировки среднего пласта, переносятся в этот последний. Плавательный пузырь рыб представляет собой выступ спинной стороны кишечника, а легкие прочих позвоночных — брюшной. Но тем не менее, на основании переходных форм, мы считаем легкие за видоизменение плавательного пузыря, переместившегося на брюшную сторону. При аномалиях гетеротопия представляет более частое явление. Так известны случаи, когда зубы появляются у человека на нёбе, на шее, волосы на нижней поверхности век, в полости рта, и описан весьма загадочный случай возникновения волос на перикардии кавказского козла тура (Aegoceros Pallasii), требующий для своего объяснения уже допущения перенесения зачатков волос из одного пласта, а именно эктодермы, в которой они нормально возникают, в другой, а именно в мезодерму, из которой развивается перикардий, если только не предположить возможности проникновения клеток эктодермы в полость перикардия во время эмбрионального развития. Вообще же Ц. является иногда даже преобладающим в развитии над палингенезом, и, притом, определение того, что считать за Ц. и что за палингенез, бесспорно тогда, когда опирается на сравнение эмбрионального развития данной формы со сравнительно анатомическими данными, полученными изучением ее предков, а так как предки эти весьма часто гипотетичны, а не менее часто и вовсе неизвестны, то определение, что считать за Ц. и палингенез, во многих случаях совершенно субъективно.

Гетеротопия - изменение места закладки и развития органа у животных в процессе их индивидуального развития— Онтогенеза; один из путей эволюционной перестройки организма. Г. возникает вследствие миграции клеток из одного зародышевого листка в другой, смещения клеток в пределах данного зародышевого листка или вторичного смещения органов. Примеры Г.: смещение сердца у птиц и млекопитающих в грудную полость (у рыб и амфибий оно располагается вблизи головы); перемещение передних конечностей у высших позвоночных кзади (по сравнению с грудными плавниками рыб). Термин «Г.» введён немецким естествоиспытателем Э. Геккелем (1874) для обозначения нарушений филогенетически обусловленной пространственной последовательности стадий онтогенеза. Впоследствии было показано, что Г. не укладывается в геккелевскую трактовку ценогенеза.

Гетерохрония - разновременность, изменение времени закладки и темпа развития органов у потомков животных и растений по сравнению с предками. Гетерохрония может выражаться в более ранней закладке и усиленном развитии органа (акселерация) или в более поздней его закладке и замедленном развитии (ретардация), что зависит от времени начала функционирования органа и, следовательно, от условий среды, в которой протекает онтогенетическое развитие организма. Гетерохрония как приспособления организмов к изменяющимся условиям их развития имеют существенное значение в историческомразвитии видов (филогенезе). Термин "гетерохрония" был введён в биологию нем. естествоиспытателем Э. Геккелем для обозначения временных нарушений биогенетического закона. Гетерохрония изучается как один из основных процессов преобразования организации животных и растений под влиянием измеряющихся условий жизни при видообразовании. Примером гетерохронии может служить раннее развитие у млекопитающих мышц языка, благодаря чему новорождённый детёныш способен производить сосательные движения. Скороспелость и позднеспелость также относятся к явлениям Г., затрагивающим организм в целом.

Филэмбриогенез - эволюционное изменение онтогенеза органов, тканей и клеток, связанное как с прогрессивным развитием, так и с редукцией. Учение о филэмбриогенезе разработано российским биологом-эволюционистом А.Н. Северцовым. Модусы (способы) филэмбриогенеза различаются по времени возникновения в процессе развития этих структур.

Если развитие определенного органа у потомков продолжается после той стадии, на которой оно заканчивалось у предков, происходит анаболия (от греч. anabole — подъем) — надставка конечной стадии развития. Примером может служить формирование четырехкамерного сердца у млекопитающих. У земноводных сердце трехкамерное: два предсердия и один желудочек. У пресмыкающихся в желудочке развивается перегородка (первая анаболия), однако эта перегородка у большинства из них неполная — она только уменьшает перемешивание артериальной и венозной крови. У крокодилов и млекопитающих развитие перегородки продолжается до полного разделения правого и левого желудочков (вторая анаболия). У детей иногда как атавизм межжелудочковая перегородка бывает недоразвитой, что ведет к тяжелому заболеванию, требующему хирургического вмешательства.

Продление развития органа не требует глубоких изменений предшествующих стадий его онтогенеза, поэтому анаболия — наиболее распространенный способ филэмбриогенеза. Предшествующие анаболиям стадии развития органов остаются сопоставимыми с этапами филогенеза) предков (т. е. являются рекапитуляциями и могут служить для его реконструкции. Если развитие органа на промежуточных стадиях уклоняется от того пути, по которому шел его онтогенез у предков, происходит девиация (от позднелат. deviatio — отклонение). Например, у рыб и у пресмыкающихся чешуи возникают как утолщения эпидермиса и подстилающего его соединительно-тканного слоя кожи — кориума. Постепенно утолщаясь, эта закладка выгибается наружу. Затем у рыб кориум окостеневает, формирующаяся костная чешуя протыкает эпидермис и выдвигается на поверхность тела. У пресмыкающихся, напротив, кость не образуется, но эпидермис ороговевает, образуя роговые чешуи ящериц и змей. У крокодилов кориум может окостеневать, образуя костную основу роговых чешуй. Девиации приводят к более глубокой, чем анаболии, перестройке онтогенеза, поэтому они встречаются реже.

Реже всего возникают изменения первичных зачатков органов — архаллаксисы (от греч. arche — начало и allaxis — изменение). При девиации рекапитуляцию можно проследить от закладки органа до момента уклонения развития. При архаллаксисе рекапитуляции нет. Примером может служить развитие тел позвонков у земноводных. У ископаемых земноводных — стегоцефалов и у современных бесхвостых земноводных тела позвонков формируются вокруг хорды из нескольких, обычно трех с каждой стороны тела, отдельных закладок, которые затем сливаются, образуя тело позвонка. У хвостатых земноводных эти закладки не возникают. Окостенение разрастается сверху и снизу, охватывая хорду, так что сразу образуется костная трубка, которая, утолщаясь, становится телом позвонка. Этот архаллаксис является причиной до сих пор дискутируемого вопроса о происхождении хвостатых земноводных. Одни ученые считают, что они произошли непосредственно от кистеперых рыб, независимо от остальных наземных позвоночных. Другие — что хвостатые земноводные очень рано дивергировали от остальных земноводных. Третьи, пренебрегая развитием позвонков, доказывают близкое родство хвостатых и бесхвостых земноводных. Редукция органов, утративших свое адаптивное значение, тоже происходит путем филэмбриогенеза, главным образом, посредством отрицательной анаболии — выпадения конечных стадий развития. При этом орган либо недоразвивается и становится рудиментом, либо претерпевает обратное развитие и полностью исчезает. Примером рудимента может служить аппендикс человека — недоразвитая слепая кишка, примером полного исчезновения — хвост головастиков лягушек. В течение всей жизни в воде хвост растет, на его конце добавляются новые позвонки и мышечные сегменты. Во время метаморфоза, когда головастик превращается в лягушку, хвост рассасывается, причем процесс идет в обратном порядке — от конца к основанию. Филэмбриогенез — основной способ адаптивного изменения строения организмов в ходе филогенеза.

Различают 3 типа филэмбриогенезов: архаллаксисы, девиации, анаболии.

Архаллаксисы – эволюционные изменения, возникающие на ранних стадиях развития. При этом наблюдается коренная перестройка в развитии органа, отклонение в развитии предке потомков с самого начала. Например, увеличение числа позвонков у змей, лучей плавников у некоторых видов рыб, числа зубов. У растений путем архаллаксисов шло превращение двудольного зародыша в однодольный. Архаллаксисы возникают сравнительно реже других типов, поскольку приводят к коренным изменениям в строении того или иного органа и могут сделать организм нежизнеспособным.

Девиации – эволюционные изменения на средних стадиях развития. Примером девиации является развитие чешуи у акул и рептилий. Считается, что у растений клубни и луковицы сформировались также путем девиации из первичной эмбриональной почки.

Анаболии – эволюционные изменения, возникающие на поздних стадиях развития. У позвоночных животных по типу анаболии происходят изменения в строении скелета. У морского петуха грудные плавники вначале развиваются, как и у других близких видов рыб, затем происходит анаболия – передние три луча разрастаются и отрастают как пальцеобразные придатки. У многих растений крыловидные выросты семян образовались как анаболии, связанные с возобновлением роста тканей завязи или чашелистиков на конечных стадиях формирования семян. Анаболии распространены в онтогенезе больше всего. Это связано с тем, что анаболии, являясь изменениями последних стадий развития данного органа, не вызывают существенных изменений в других частях тела. С каждой новой анаболией прежние конечные стадии развития как бы передвигаются в глубь онтогенеза.

Различные органы у одного и того же организма могут развиваться и изменяться всеми тремя типами. Все эти изменения могут носить как положительный, так и отрицательный характер. В первом случае имеется в виду возникновение нового признака, а во втором – выпадение, утрата старого признака. Например, у зародыша лошади мы имеем дело с отрицательной анаболией, в силу которой боковые (четвертый и второй) пальцы подвергаются рудиментации. С генетической точки зрения в основе всех типов филэмбриогенезов лежат мутации. Если мутации затрагивают структурные гены, определяющие развитие сложных органов, то отклонение в их развитии пойдет по типу архаллаксиса. Если мутации затрагивают гены, ответственные за морфогенез на средних и поздних стадиях, происходят изменения типа девиации и анаболии.

Макроэволюция

Макроэволюция органического мира — это процесс формирования крупных систематических единиц: из видов — новых родов, из родов — новых семейств и т. д. В основе макроэволюции лежат те же движущие силы, что и в основе микроэволюции: наследственность, изменчивость, естественный отбор и репродуктивная изоляция. Так же, как и микроэволюция, макроэволюция имеет дивергентный характер. Понятие макроэволюции интерпретировалось многократно, но окончательного и однозначного понимания не достигнуто. Согласно одной из версий, макроэволюция — изменения системного характера, соответственно, огромных промежутков времени они не требуют.

Процессы макроэволюции требуют огромных промежутков времени и непосредственно изучать её в большинстве случаев не представляется возможным. Одно из исключений — наблюдаемое ускоренное формирование новых надвидовых таксонов моллюсков в условиях гибели Аральского моря.

Одним из методов изучения макроэволюции является компьютерное моделирование. Так, с конца 1980-х макроэволюция изучается с помощью программы MACROPHYLON.

Доказательства

Все животные имеют единый план строения, что указывает на единство происхождения. В частности, об общих предках рыб, земноводных, рептилий, птиц и млекопитающих говорит строение гомологичных органов (например, пятипалой конечности, в основе которой лежит скелет плавников кистепёрых рыб). О единых предках свидетельствуют и атавизмы — органы предков, развивающиеся иногда у современных существ. Например, к атавизмам у человека относится возникновение многососковости, хвоста, сплошного волосяного покрова и т. п. Ещё одно доказательство эволюции — наличие рудиментов — органов, утративших своё значение и находящихся на стадии исчезновения. У человека — это остатки третьего века, аппендикс, утрачиваемый волосяной покров и т. п.

У всех позвоночных животных наблюдается значительное сходство зародышей на ранних стадиях развития: форма тела, зачатки жабр, хвост, один круг кровообращения и т. д. (закон зародышевого сходства К. Бэра). Однако по мере развития сходство между зародышами различных систематических групп постепенно стирается и начинают преобладать черты, свойственные таксонам более низкого порядка, к которым они принадлежат. Таким образом, все хордовые животные произошли от единых предков.

Другой пример эмбриологических доказательств макроэволюции — происхождение из одних и тех же структур зародыша квадратной и суставной костей в челюстях у рептилий и молоточка и наковальни в среднем ухе у млекопитающих. Палеонтологические данные также подтверждают происхождение частей уха млекопитающих из костей челюсти рептилий.

К таким доказательствам относятся нахождение остатков вымерших переходных форм, позволяющих проследить путь от одной группы живых существ к другой. Например, обнаружение трёхпалого и пятипалого предполагаемых предков современной лошади, имеющей один палец, доказывает, что у предков лошади было пять пальцев на каждой конечности. Обнаружение ископаемых останков археоптерикса позволило сделать вывод о существовании переходных форм между пресмыкающимися и птицами. Нахождение остатков вымерших семенных папоротников позволяет решить вопрос об эволюции современных голосеменных и т. п. На основании палеонтологических находок были выстроены филогенетические ряды, то есть ряды видов, последовательно сменяющих друг друга в процессе эволюции.

Единообразие химического состава живых организмов (и их предковых форм), наличие элементов органогенов, микроэлементов.

Единообразие генетического кода у всех живых организмов (ДНК, РНК).

Сходство химизма процессов пластического и энергетического обмена. У подавляющего большинства организмов в качестве молекул-аккумуляторов энергии используется АТФ, одинаковы также механизмы расщепления сахаров и основной энергетический цикл клетки.

Ферментативный характер биохимических процессов.

Распространение животных и растений по поверхности Земли отражает процесс эволюции. Уоллес разделил поверхность земли на 6 зоогеографических зон: 1. Палеоарктическая зона (Европа, Северная и Средняя Азия, Северная Африка) 2. Неоарктическая (Северная Америка) 3. Эфиопская (Центральная и Южная Африка) 4. Австралийская (Австралия, Тасмания, Новая Зеландия) 5. Индомалайская (Индия,) 6. Неотропическая (Южная и Центральная Америка) Чем теснее связь континентов, тем больше родственных видов на них обитает, чем древнее изоляция, тем больше различий между животными и растениями.

Сальтационная концепция макроэволюции

Сальтационисты рассматривают микроэволюцию и макроэволюцию как качественно различные процессы, не имеющие между собой ничего общего. Новые крупные таксоны возникают посредством особых механизмов. Макроэволюция - результат крупных скачкообразных преобразований отдельных особей, происходящих посредством макромутаций (сальтаций), а также путем "горизонтального переноса" генетической информации от одного вида к другому. В результате скачкообразно возникают новые виды, резко отличающиеся от родительских форм. Они же дают начало новым надвидовым таксонам. Эта концепция опирается на прерывистость палеонтологической летописи — на отсутствие во многих случаях промежуточных форм. Наиболее давнее и уважаемое макроэволюционное учение на основе скачкообразных преобразований плана строения и организации — это учение А. Н. Северцова об ароморфозах. Оно хорошо иллюстрируется всем известной схемой соотношения ароморфоза и идиоадаптаций. Несмотря на давность идеи об ароморфной — скачкообразной — эволюции, ее механизм не выяснен до сих пор. Концепция сальтаций неубедительна. Во-первых, всякая целостная система есть не просто собранием определенных структурных элементов, но результатом их интеграции, т. е. объединения, при котором свойства системы не равнозначны сумме свойств ее элементов. Поэтому организмы макромутанты часто нежизнеспособны из-за нарушений корреляции органов. Во-вторых, макромутанты мало приспособлены к среде. В-третьих, им трудно найти партнера.

Редукционистская концепция макроэволюции

Согласно этой концепции, макроэволюция не имеет никаких собственных механизмов и полностью сводится к микроэволюционным процессам. Дж. Симпсон: "Макроэволюция представляет собой лишь сумму длинной серии непрерывных изменений, которая таксономически может быть разбита на горизонтальные филетические подразделения любой величины, включая подвиды". Макроэволюция есть интегрированное выражение микроэволюционных процессов. Возникновение высших категорий — не что иное, как экстраполяция процессов видообразования. По мнению редукционистов, накапливаясь, микроэволюционные процессы получают внешнее выражение в макроэволюционных явлениях. Макроэволюция представляет собой обобщенную картину эволюционных изменений, наблюдаемую в широкой исторической перспективе. Логично, по мнению редукционистов, применять термин "макроэволюция" к процессам внезапного видообразования (полиплоидное, гибридное), в результате которых сразу возникают организмы нового таксона. Э. Майр обоснованно утверждает, что "макрогенез — внезапное возникновение новых видов, новых высших таксонов и новых типов — есть логическое следствие типологической интерпретации таксонов, т. к. сторонники макрогенеза считают особь реальной единицей эволюции" (1974, 280). Возражения против макрогенеза столь многочисленны (по мнению редукционистов), а данные в его пользу столь скудны, что поддерживать гипотезу скачкообразной эволюции противоречит научному принципу экономии мышления.

Системная концепция макроэволюции

По этой концепции макроэволюционные преобразования складываются из микроэволюционных изменений, но не сводятся к простой сумме последних.

Микроэволюция

Микроэволюция — процесс преобразования популяции или популяций под действием факторов эволюции. Термин Филипченко (1927). В разработке концепции микроэволюции большую роль сыграли работы С. С. Четверикова, Дж. Холдейна, Р. Фишера, С. Райта, Н. В. Тимофева-Ресовского, Е. Форда, Ф. Г. Добжанского, Э. Майра, Д. Г Симпсона, И. И. Шмальгаузена.

Под действием элементарных факторов на генофонд популяции происходит изменение частот отдельных генов. Это приводит к элементарному эволюционному явлению — изменению генотипического и фенотипического состава популяции. При длительном однонаправленном воздействии естественного отбора наблюдается дифференциация популяций.

Такой процесс изучен Кэмином и Эрлихом. Они изучали популяции ужей на островах западной части озера Эри. Там было выявлено 4 класса ужей, которые отличались цветом. У змей типа А полосы отсутствуют, у типа Б полосы слабо выражены, у типа В полосы имеются, у типа Г полосы выражены лучше всего. Вокруг озера обитают ужи, относящиеся к типу Г. На островах много особей без полос. Единственным подходящим местообитанием для ужей на островах являются плоские известковые скалы, известковые обрывы и галечные отмели. С островов брали большие выборки взрослых ужей. Брали оплодотворенных самок и сравнивали соотношение типов рисунка среди потомства и среди взрослых особей. Процент особей типа А и Б в популяции взрослых особей был выше, чем в потомстве. Поэтому гипотеза возрастной изменчивости была отвергнута, так как у потомства, выращенного в лаборатории, не наблюдалось никакой возрастной изменчивости.

Гипотеза избирательной элиминации была подтверждена. У змей на островах есть враги, выискивающие жертву с помощью глаз: чайки, цапли, ястребы. Коэффициент отбора для полосатых па островах — 0,75, для белых — 0,20, т. к. ужи без полос плохо различимы на фоне белесых плоских известковых скал. Полосатые же ужи очень заметны. Интенсивность отбора очень высокая. Вероятность выживания полосатых в 4 раза меньше вероятности выживания ужей без полос.

Микроэволюционные процессы, связанные с применением инсектицидов, привели к тому, что 350 видов насекомых стали устойчивыми к инсектицидам. У сотни видов насекомых обнаружен индустриальный меланизм. Микроэволюционные процессы, начавшиеся сотни тысяч лет назад в районе Берингии, привели к формированию трех видов чаек: клуши, серебристой чайки, хохотуньи.

Микроэволюция — это распространение в популяции малых изменений в частотах аллелей на протяжении нескольких поколений; эволюционные изменения на внутривидовом уровне. Такие изменения происходят из-за следующих процессов: мутации, естественный отбор, искусственный отбор, перенос генов и дрейф генов. Эти изменения приводят к дивергенции популяций внутри вида, и, в конечном итоге, к видообразованию.

Популяционная генетика — это ветвь биологии, которая обеспечивает математический аппарат для изучения микроэволюционных процессов. Экологическая генетика наблюдает микроэволюцию в реальности. Как правило, наблюдаемые процессы эволюции являются примерами микроэволюции, например, образование штаммов бактерий, обладающих устойчивостью к антибиотикам.

Микроэволюции часто противопоставляют макроэволюции, которая представляет собой значительные изменения в частотах генов на популяционном уровне в значительном геологическом промежутке времени. Каждый подход вносит свой вклад в эволюционные процессы.

Второе понятие микроэволюции — процесс видообразования.

Видообразование

Видообразование — процесс возникновения новых видов. Видообразование — это процесс изменения старых видов и появления новых в результате накопления новых признаков. При этом генетическая несовместимость новообразованных видов, то есть их неспособность производить плодотворное потомство или вообще потомство, при скрещивании называется межвидовым барьером, или барьером межвидовой совместимости.

Существуют разнообразные теории, объясняющие механизмы видообразования, ни одна из которых не считается общепризнанной и полностью доказанной. Одна из причин этого — сложность эмпирической проверки из-за долговременности изучаемого процесса.

Согласно синтетической теории эволюции (СТЭ), основой для видообразования является наследственная изменчивость организмов, ведущий фактор — естественный отбор. В СТЭ выделяют два способа видообразования: географическое, или аллопатрическое, и экологическое, или симпатрическое.

Симпатрическое (экологическое) видообразование

Связано с расхождением групп особей одного вида и обитающих на одном ареале по экологическим признакам. При этом особи с промежуточными характеристиками оказываются менее приспособленными. Расходящиеся группы формируют новые виды.

Симпатрическое видообразование может протекать несколькими способами. Один из них — возникновение новых видов при быстром изменении кариотипа путём полиплоидизации. Известны группы близких видов, обычно растений, с кратным числом хромосом. Другой способ симпатрического видообразования — гибридизация с последующим удвоением числа хромосом. Сейчас известно немало видов, гибридогенное происхождение и характер генома которых может считаться экспериментально доказанным. Третий способ симпатрического видообразования — возникновение репродуктивной изоляции особей внутри первоначально единой популяции в результате фрагментации или слияния хромосом и других хромосомных перестроек. Этот способ распространён как у растений, так и у животных. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских.

Аллопатрическое (географическое) видообразование

Вызывается разделением ареала вида на несколько изолированных частей.Возникновение географических преград (горных хребтов, морских проливов и пр.) приводит к возникновению изолятов- географически изолированных популяций. При этом на каждую такую часть отбор может действовать по-разному, а эффекты дрейфа генов и мутационного процесса будут явно отличаться. Тогда со временем в изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу. При таких исторических процессах степень расхождения групп может достигнуть видового уровня.

«Мгновенное» видообразование на основе полиплоидии

Не предполагает деление ареала на части и формально является симпатрическим. При этом за несколько поколений в результате резких изменений в геноме формируется новый вид.

Сальтационно происходит видообразование на основе полиплоидии у растений.

Гибридогенное видообразование

При скрещивании различных видов потомство обычно бывает стерильным. Это связано с тем, что число хромосом у разных видов различно. Несходные хромосомы не могут нормально сходиться в пары в процессе мейоза, и образующиеся половые клетки не получают нормального набора хромосом. Однако, если у такого гибрида происходит геномная мутация, вызывающая удвоение числа хромосом, то мейоз протекает нормально и дает нормальные половые клетки. При этом гибридная форма приобретает способность к размножению и утрачивает возможность скрещивания с родительскими формами. Кроме того, межвидовые гибриды растений могут размножатся вегетативным путем.

Существующие в природе естественные ряды гибридных видов растений возникли, вероятно, именно таким путем. Так, известны виды пшеницы с 14, 28 и 42 хромосомами, виды роз с 14, 28, 42 и 56 хромосомами и виды фиалок с числом хромосом, кратным 6 в интервале от 12 до 54. По некоторым данным, гибридогенное происхождение имеют не менее трети всех видов цветковых растений.

Гибридогенное происхождение доказано и для некоторых видов животных, в частности, скальных ящериц, земноводных и рыб. Некоторые виды кавказских ящериц, имеющих гибридогенное происхождение, триплоидны и размножаются с помощью партеногенеза.

Наблюдение видообразования

Судя по палеонтологической летописи и по измерениям скорости мутаций, полная несовместимость геномов, делающая невозможным скрещивание, достигается в природе в среднем за 3 млн. лет. А значит, наблюдение образования нового вида в естественных условиях в принципе возможно, но это редкое событие. В то же время, в лабораторных условиях скорость эволюционных изменений может быть увеличена, поэтому есть основания надеяться увидеть видообразование у лабораторных животных.

Известны многие случаи видообразования посредством гибридизации и полиплоидизации у таких растений как конопля, крапива, первоцвет, редька, капуста, а также у различных видов папоротников. В ряде случаев видообразование у растений происходило без гибридизации и полиплоидизации (кукуруза, стефаномерия).

Дрозофилы, также известные как плодовые мухи, входят в число наиболее изученных организмов. С 1970-х годов зафиксированы многие случаи видообразования у дрозофил. Видообразование происходило, в частности, за счёт пространственного разделения, разделения по экологическим нишам в одном ареале, изменения поведения при спаривании, дизруптивного отбора, а также за счет сочетания эффекта основателя с эффектом бутылочного горлышка (в ходе экспериментов founder-flush).

Видообразование наблюдалось в лабораторных популяциях комнатных мух, мух Eurosta solidaginis, яблонных мух-пестрокрылок, мучных жуков, комаров и других насекомых.

Известны случаи, когда в результате давления отбора (в присутствии хищников) одноклеточные зелёные водоросли из рода хлорелла образовывали многоклеточные колониальные организмы, а у бактерий в аналогичных условиях менялось строение и увеличивались размеры (c 1,5 до 20 микрометров за 8—10 недель). Являются ли эти случаи примерами видообразования, зависит от того, какое используется определение вида (при бесполом размножении нельзя использовать критерий репродуктивной изоляции).

Видообразование также наблюдалось и у млекопитающих. Шесть случаев видообразования у домовых мышей на острове Мадейра за последние 500 лет были следствием исключительно географической изоляции, генетического дрейфа и слияния хромосом. Слияние двух хромосом — это наиболее заметное различие геномов человека и шимпанзе, а у некоторых популяций мышей на Мадейре за 500 лет было девять подобных слияний.

Естественный отбор (основной движущий фактор эволюции).

Естественный отбор — процесс, посредством которого в популяции увеличивается число особей, обладающих максимальной приспособленностью (наиболее благоприятными признаками), в то время как количество особей с неблагоприятными признаками уменьшается. В свете современной синтетической теории эволюции естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов. Естественный отбор — единственная известная причина адаптаций, но не единственная причина эволюции. К числу неадаптивных причин относятся генетический дрейф, поток генов и мутации.

Термин "Естественный отбор" популяризовал Чарльз Дарвин, сравнивая данный процесс с искусственным отбором, современной формой которого является селекция. Идея сравнения искусственного и естественного отбора состоит в том, что в природе так же происходит отбор наиболее «удачных», «лучших» организмов, но в роли «оценщика» полезности свойств в данном случае выступает не человек, а среда обитания. К тому же, материалом как для естественного, так и для искусственного отбора являются небольшие наследственные изменения, которые накапливаются из поколения в поколение.

Механизм естественного отбора

В процессе естественного отбора закрепляются мутации, увеличивающие приспособленность организмов. Естественный отбор часто называют «самоочевидным» механизмом, поскольку он следует из таких простых фактов, как:

  • организмы производят потомков больше, чем может выжить;

  • в популяции этих организмов существует наследственная изменчивость;

  • организмы, имеющие разные генетические черты, имеют различную выживаемость и способность размножаться.

Такие условия создают конкуренцию между организмами в выживании и размножении и являются минимально необходимыми условиями для эволюции посредством естественного отбора. Таким образом, организмы с наследственными чертами, которые дают им конкурентное преимущество, имеют большую вероятность передать их своим потомкам, чем организмы с наследственными чертами, не имеющими подобного преимущества.

Центральное понятие концепции естественного отбора — приспособленность организмов. Приспособленность определяется как способность организма к выживанию и размножению, которая определяет размер его генетического вклада в следующее поколение. Однако главным в определении приспособленности является не общее число потомков, а число потомков с данным генотипом (относительная приспособленность). Например, если потомки успешного и быстро размножающегося организма слабые и плохо размножаются, то генетический вклад и, соответственно, приспособленность этого организма будут низкими.

Если какая-либо аллель увеличивает приспособленность организма больше, чем другие аллели этого гена, то с каждым поколением доля этой аллели в популяции будет расти. То есть, отбор происходит в пользу этой аллели. И наоборот, для менее выгодных или вредных аллелей — их доля в популяциях будет снижаться, то есть отбор будет действовать против этих аллелей. Важно отметить, что влияние определённых аллелей на приспособленность организма не является постоянным — при изменении условий окружающей среды вредные или нейтральные аллели могут стать полезными, а полезные вредными.

Естественный отбор для черт, которые могут изменяться в некотором диапазоне значений (например, размер организма), можно разделить на три типа:

  1. Направленный отбор (движущий) — изменения среднего значения признака в течение долгого времени, например увеличение размеров тела;

  2. Дизруптивный отбор — отбор на крайние значения признака и против средних значений, например, большие и маленькие размеры тела;

  3. Стабилизирующий отбор — отбор против крайних значений признака, что приводит к уменьшению дисперсии признака и уменьшению разнообразия.

Частным случаем естественного отбора является половой отбор, субстратом которого является любой признак, который увеличивает успешность спаривания за счёт увеличения привлекательности особи для потенциальных партнёров. Черты, которые эволюционировали за счёт полового отбора, особенно хорошо заметны у самцов некоторых видов животных. Такие признаки, как крупные рога, яркая окраска, с одной стороны могут привлекать хищников и понижать выживаемость самцов, а с другой это уравновешивается репродуктивным успехом самцов с подобными ярко выраженными признаками.

Отбор может действовать на различных уровнях организации, таких как гены, клетки, отдельные организмы, группы организмов и виды. Причём отбор может одновременно действовать на разных уровнях. Отбор на уровнях выше индивидуального, например, групповой отбор, может приводить к кооперации.

Формы естественного отбора

Существуют разные классификации форм отбора. Широко используется классификация, основанная на характере влияния форм отбора на изменчивость признака в популяции.

Движущий отбор

Форма естественного отбора, которая действует при направленном изменении условий внешней среды. Описали Дарвин и Уоллес. В этом случае особи с признаками, которые отклоняются в определённую сторону от среднего значения, получают преимущества. При этом иные вариации признака (его отклонения в противоположную сторону от среднего значения) подвергаются отрицательному отбору. В результате в популяции из поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).

Примером действия движущего отбора является «индустриальный меланизм» у насекомых. «Индустриальный меланизм» представляет собой резкое повышение доли меланистических (имеющих тёмную окраску) особей в тех популяциях насекомых (например, бабочек), которые обитают в промышленных районах. Из-за промышленного воздействия стволы деревьев значительно потемнели, а также погибли светлые лишайники, из-за чего светлые бабочки стали лучше видны для птиц, а тёмные — хуже. В XX веке в ряде районов доля тёмноокрашенных бабочек в некоторых хорошо изученных популяциях березовой пяденицы в Англии достигла 95 %, в то время как впервые тёмная бабочка (morfa carbonaria) была отловлена в 1848 году.

Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определённом направлении, перемещая соответственно и норму реакции. Например, при освоении почвы как среды обитания у различных неродственных групп животных конечности превратились в роющие.

Стабилизирующий отбор

Форма естественного отбора, при которой его действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака. Понятие стабилизирующего отбора ввел в науку и проанализировал И. И. Шмальгаузен.

Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детёнышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.

Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорождённые с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорождённые со средним весом. Учёт размера крыльев у воробьёв, погибших после бури в 50-х годах под Ленинградом, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.

Дизруптивный (разрывающий) отбор

Форма естественного отбора, при котором условия благоприятствуют двум или нескольким крайним вариантам (направлениям) изменчивости, но не благоприятствуют промежуточному, среднему состоянию признака. В результате может появиться несколько новых форм из одной исходной. Дарвин описывал действие дизруптивного отбора, считая, что он лежит в основе дивергенции, хотя и не мог привести доказательств его существования в природе. Дизруптивный отбор способствует возникновению и поддержанию полиморфизма популяций, а в некоторых случаях может служить причиной видообразования.

Одна из возможных в природе ситуаций, в которой вступает в действие дизруптивный отбор, — когда полиморфная популяция занимает неоднородное местообитание. При этом разные формы приспосабливаются к различным экологическим нишам или субнишам.

Примером дизруптивного отбора является образование двух рас у погремка большого на сенокосных лугах. В нормальных условиях сроки цветения и созревания семян у этого растения покрывают всё лето. Но на сенокосных лугах семена дают преимущественно те растения, которые успевают отцвести и созреть либо до периода покоса, либо цветут в конце лета, после покоса. В результате образуются две расы погремка — ранне- и позднецветущая.

Дизруптивный отбор осуществлялся искусственно в экспериментах с дрозофилами. Отбор проводился по числу щетинок, оставлялись только особи с малым и большим количеством щетинок. В результате примерно с 30-го поколения две линии разошлись очень сильно, несмотря на то, что мухи продолжали скрещиваться между собой, осуществляя обмен генами. В ряде других экспериментов (с растениями) интенсивное скрещивание препятствовало эффективному действию дизруптивного отбора.

Половой отбор

Половой отбор - это естественный отбор на успех в размножении. Выживание организмов является важным, но не единственным компонентом естественного отбора. Другим важнейшим компонентом является привлекательность для особей противоположного пола. Дарвин назвал это явление половым отбором. «Эта форма отбора определяется не борьбой за существование в отношениях органических существ между собою или с внешними условиями, но соперничеством между особями одного пола, обычно самцами, за обладание особями другого пола». Признаки, которые снижают жизнеспособность их носителей, могут возникать и распространяться, если преимущества, которые они дают в успехе размножения, значительно выше, чем их недостатки для выживания. Было предложено две основные гипотезы о механизмах полового отбора. Согласно гипотезе «хороших генов» самка «рассуждает» следующим образом: «Если этот самец, несмотря на его яркое оперение и длинный хвост, каким-то образом умудрился не погибнуть в лапах хищника и дожить до половой зрелости, то, следовательно, он обладает хорошими генами, которые позволили ему это сделать. Значит, его стоит выбрать в качестве отца для своих детей: он передаст им свои хорошие гены». Выбирая ярких самцов, самки выбирают хорошие гены для своих потомков. Согласно гипотезе «привлекательных сыновей» логика выбора самок несколько иная. Если яркие самцы, по каким бы то ни было причинам, являются привлекательными для самок, то стоит выбирать яркого отца для своих будущих сыновей, потому что его сыновья унаследуют гены яркой окраски и будут привлекательными для самок в следующем поколении. Таким образом, возникает положительная обратная связь, которая приводит к тому, что из поколения в поколение яркость оперения самцов все более и более усиливается. Процесс идет по нарастающей до тех пор, пока не достигнет предела жизнеспособности. В выборе самцов самки не более и не менее логичны, чем во всем остальном их поведении. Когда животное чувствует жажду, оно не рассуждает, что ему следует попить воды, для того чтобы восстановить водно-солевой баланс в организме — оно идет на водопой, потому что чувствует жажду. Точно так же и самки, выбирая ярких самцов, следуют своим инстинктами — им нравятся яркие хвосты. Все те, кому инстинкт подсказывал иное поведение, все они не оставили потомства. Таким образом, мы обсуждали не логику самок, а логику борьбы за существование и естественного отбора — слепого и автоматического процесса, который, действуя постоянно из поколения в поколение, сформировал все то удивительное разнообразие форм, окрасок и инстинктов, которое мы наблюдаем в мире живой природы.

Существует две формы естественного отбора: Положительный и Отсекающий (отрицательный) отбор.

Положительный отбор увеличивает в популяции число особей, обладающих полезными признаками, повышающими жизнеспособность вида в целом.

Отсекающий (отрицательный) отбор выбраковывает из популяции подавляющее большинство особей, несущих признаки, резко снижающие жизнеспособность при данных условиях среды. С помощью отсекающего отбора из популяции удаляются сильно вредные аллели. Также отсекающему отбору могут подвергаться особи с хромосомными перестройками и набором хромосом, резко нарушающими нормальную работу генетического аппарата.

Дарвиновская концепция естественного отбора

Словами Дарвина, концепция естественного отбора состоит в следующем:

  • Все существа имеют определенный уровень индивидуальной изменчивости. Индивидуальные отличия необходимы, так как их может накапливать естественный отбор: "При отсутствии изменений природный отбор бессильный что-нибудь сделать".

  • В виду того, что все организмы размножаются в геометрической прогрессии, они должны бороться за жизнь — вступать в бесконечно сложные и тесно переплетенные взаимоотношения организмов друг с другом и с физическими условиями жизни. Эта совокупность процессов ведет к избирательному уничтожению или устранению от размножения организмов, менее приспособленных к природным условиям существования. Малейшая разница в строении может дать перевес в борьбе за жизнь. Вследствие борьбы за существование сохраняются и оставляют потомков организмы, более приспособленные к существующим условиям. Природный отбор — конечный результат борьбы за существование. "Естественный отбор вытекает из борьбы за существование".

Природный отбор "работает" везде над усовершенствованием органических существ, "действует на организмы в любом возрасте", он может изменить яйцо, семя или полностью развитый организм. Природный отбор "может влиять на всякий внутренний орган, на каждый оттенок конституциональных особенностей, на весь жизненный механизм". Дарвин: "Сохранение благоприятных индивидуальных различий и изменений и уничтожение вредных я назвал Естественным отбором". Дарвин не видел пределов деятельности природного отбора.

Возникновение адаптации по Дарвину

Строение и функции организмов есть результат действия естественного отбора на бесчисленные поколения организмов. Под влиянием природного отбора возникли разнообразнейшие приспособления (адаптации). Они служат для защиты, размножения, расселения, питания.

Дарвин приводит такие примеры адаптации. Насекомые, которые питаются листьями, — зеленые, а те, которые питаются корой, - пятнистосерые. Альпийские куропатки зимой белые. Красный шотландский тетерев окрашен под цвет вереска. Насекомые могут напоминать лист, сучок дерева, палочку. Это помогает им не стать жертвой врагов, которые разыскивают жертву с помощью зрения.

Целесообразность по Дарвину

В предметном указателе к "Происхождению видов" термин "целесообразность" не указывается. Тем не менее проблема целесообразности в дарвинизме считается центральной. К тому же, считается, что Дарвин имеет историческую заслугу в объяснении целесообразности, так как проблема целесообразности — это проблема любой гипотезы эволюции.

Проблема целесообразности древняя: она существует со времен Аристотеля. Это связано с тем, что это явление имеет телеологическое, теологическое и дарвиновское объяснение. Последнее заключается в том, что организмы имеют такую организацию, которая полезна в данных условиях, т. к. обеспечивает их выживание и размножение. Целесообразность есть результат естественного отбора. Под контролем естественного отбора каждое существо становится все более соответствующим природным условиям. На острове Мадейра из 550 видов жуков 220 видов были бескрылыми. Из 29 местных родов не менее, чем в 23, все виды бескрылые. Бескрылость мадейрских жуков — результат действия естественного отбора. Главный фактор естественного отбора в этом случае — сильные морские ветры, которые уносят крылатых особей в море. Отбор сохранил и крылатых — тех, которые имеют целесообразное поведение: не летают во время ветра или прячутся в защищенных от ветра местах.

Целесообразность относительна. Жало пчелы - несовершенное средство зашиты против млекопитающих: жало отрывается, а это ведет к гибели пчелы. Зеленая окраска кузнечика хорошо его маскирует в зеленой траве, но на фоне высохшей травы это насекомое хорошо заметно. Жгучие волоски крапивы защищают ее от поедания улитками и млекопитающими, однако они не защищают крапиву от гусениц бабочки крапивницы. В природе нет абсолютно приспособленных организмов и адаптации. Заяц-беляк хорошо виден на фоне темных стволов леса в случае невыпадения снега. Ночные бабочки летят на огонь и при этом гибнут. Это связано с тем, что они собирают нектар в основном со светлых цветков, хорошо заметных ночью. Стриж не может взлететь с ровной поверхности, так как у него длинные крылья и очень короткие ноги. Верблюжья колючка хорошо защищена колючками, но ее охотно поедают верблюды и козы. Ядовитых змей поедают ежи, мангусты, некоторые птицы. Относительность целесообразности обусловлена тем, что среда (рельеф, климат, состав флоры и фауны) не постоянна. Адаптации, выработанные в одних условиях существования, теряют свою ценность при изменении условий жизни. В новых условиях естественный отбор изменяет направление, и отбороценными признаками становятся новые варианты признаков и новые адаптации.

Адаптации

В биологии - развитие любого признака, который способствует выживанию вида и его размножению. Адаптации могут быть морфологическими, физиологическими или поведенческими. Морфологические адаптации включают изменения формы или строения организма. Пример такой адаптации - твердый панцирь черепах, обеспечивающий защиту от хищных животных. Физиологические адаптации связаны с химическими процессами в организме. Так, запах цветка может служить для привлечения насекомых и тем самым способствовать опылению растения. Поведенческая адаптация связана с определенным аспектом жизнедеятельности животного. Типичный пример - зимний сон у медведя. Большинство адаптаций представляет собой сочетание перечисленных типов. Например, кровососание у комаров обеспечивается сложной комбинацией таких адаптаций, как развитие специализированных частей ротового аппарата, приспособленных к сосанию, формирование поискового поведения для нахождения животного-жертвы, а также выработка слюнными железами специальных секретов, которые предотвращают свертывание высасываемой крови. Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации.

Генетическая основа

У каждого вида программа развития признаков заложена в генетическом материале. Материал и закодированная в нем программа передаются от одного поколения другому, оставаясь относительно неизменными, благодаря чему представители того или иного вида выглядят и ведут себя почти одинаково. Однако в популяции организмов любого вида всегда присутствуют небольшие изменения генетического материала и, следовательно, вариации признаков отдельных особей. Именно из этих разнообразных генетических вариаций процесс приспособления отбирает те признаки или благоприятствует развитию таких признаков, которые в наибольшей степени увеличивают шансы на выживание и тем самым на сохранение генетического материала. Адаптация, таким образом, может рассматриваться как процесс, посредством которого генетический материал повышает свои шансы на сохранение в последующих поколениях. С этой точки зрения, каждый вид олицетворяет собой успешный способ сохранения определенного генетического материала. Чтобы передать генетический материал, особь любого вида должна иметь возможность питаться, дожить до периода размножения, оставить потомство и затем распространить его на возможно большей территории.

Пример адаптаций самостоятельно.

Изоляция

Изоляция — это нарушение панмиксии и потока генов. Изоляции как фактору, увеличивающему разнообразие организмов, придавали большое значение М. Вагнер, А. Гумбольдт, Ж. Бюффон, П. Л. Мопертюи, Ж. Кювье, А. Р. Уоллес, Ч. Дарвин. "Изоляция также является важным элементом в процессе изменения видов посредством естественного отбора", — писал Дарвин. Он определил изоляцию "как препятствие к скрещиванию". Изоляция есть прекращение потока генов (миграции и скрещивания) географическими преградами, особенностями строения, физиологии, поведения организмов. Поэтому выделяют два типа изоляции — географическую и биологическую.

Географическая изоляция — это пространственная, территориальная, климатическая изоляция, возникающая вследствие прекращения миграции (потока генов) и панмиксии географическими преградами. В качестве географических преград могут выступать океанические и морские проливы, реки для сухопутных организмов и суша - для водных.

Эффективность океанических и морских проливов известна давно. Так, А. Р. Уоллес обнаружил значительные отличия между островами Бали и Ломбок по биоте: пролив между ними отделяет ориентальную фауну от австралийской. Дарвин изучал результаты пространственной изоляции на Галапагосских островах. Крупные реки часто выступают в качестве географической преграды для сухопутных организмов. Так, Днепр есть граница ареалов двух видов сусликов: на правом берегу обитает крапчатый, а на левом — серый.

Для донных морских организмов (бентоса) непреодолимой преградой есть большие океанические преграды и большие океанические хребты. Для абисальных животных непреодолимой преградой выступают неглубокие участки моря. Суша выступает в качестве непреодолимой преграды для рыб и водных беспозвоночных. Панамский перешеек сформировался 2-5 млн. лет назад, когда произошло сближение Северной и Южной Америк. После образования перешейка прежде единые популяции начали дивергировать, и из общей ихтиофауны сформировались атлантическая и тихоокеанская. Из исследованных 1200 видов рыб только 6 % встречаются по обе стороны перешейка, а остальные — отличаются.

Водораздел Уральского хребта разграничивает ареалы тритонов: до Уральских гор встречается европейский тритон, за Уралом обитает сибирский тритон. В качестве изолирующего фактора могут выступать климатические преграды. Так, заяц-беляк имеет ареал в лесной зоне, а заяц-русак — в степной.

Биологическая изоляция — это биологические барьеры межпопуляционному скрещиванию. Известны два механизма репродуктивной изоляции: презиготические и постзиготические. Презиготические механизмы препятствуют скрещиванию индивидов различных популяций и тем самым исключают возможность появления гибридного потомства. В презиготической изоляции выделяют следующие формы:

Экологическая изоляция — изоляция вследствие экологического разобщения. Популяции живут на общей территории, но в различных местах обитания и поэтому друг с другом не встречаются. В горах обычны два вида традесканции: один на скалистых вершинах, другой — в тенистых лесах.

Временная изоляция — изоляция вследствие разновременности половой активности или цветения. Максимум кладок серебристой чайки приходится на последнюю треть апреля, а у восточной клуши - не раньше середины мая.

Этологическая изоляция — неспаривание вследствие различий в сексуальном поведении (в ухаживании, пении, танцах, свечении, демонстрациях). Брачная окраска, поведение и сигналы самцов воспринимаются только самками того же вида. У млекопитающих важную роль играют химические сигналы.

Механическая изоляция — безрезультатность спаривания вследствие разного строения половых органов. Межвидовые спаривания у дрозофилы приводят к травмам и даже к смерти партнеров. Шалфеи различаются строением цветка и поэтому опыляются разными видами пчел.

Гаметическая изоляция — отсутствие таксиса между гаметами или же гибель микрогамет в половых путях самки или в рыльцах цветков.

Постзиготическая репродуктивная изоляция возникает вследствие:

  • нежизнеспособность гибридов: зигота развивается в гибрид, обладающий пониженной жизнеспособностью (гибнет зародыш на разных стадиях развития, гибнет молодой организм, гибрид не достигает половой зрелости);

  • стерильность гибридов: гибриды жизнеспособны, но они не образуют полноценных гамет;

  • вырождение гибридов — разрушение гибридов: гибриды дают потомков, жизнеспособность и плодовитость которых понижена.

У растений репродуктивная изоляция заключается в следующем:

  • Пыльца другого вида не прорастает на рыльцах цветков другого вида.

  • Пыльца прорастает, но пыльцевые трубки растут медленно.

  • Оплодотворение происходит, но зародыш гибнет на разных стадиях эмбриогенеза и жизнеспособное семя не образуется.

  • Пыльники у гибридов недоразвиты, либо они не открываются.

  • Происходит нарушение мейоза при образовании гамет.

Значение изоляции: нарушает панмиксию, усиливает в изолятах инбридинг, закрепляет генотипическую дифференцировку, усиливает генотипическую дифференцировку, ведет к формированию нескольких популяций из одной исходной.

Наследственная изменчивость

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативная изменчивость

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

  1. Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.

  2. Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

  3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость.

Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:

  1. Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

  2. В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

  3. Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

  4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

  5. Сходные мутации могут возникать повторно.

  6. Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Мутации

Мутация — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Гуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

Причины мутаций

Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около — на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Мутагены

Существуют факторы, способные заметно увеличить частоту мутаций — мутагенные факторы.

К ним относятся:

  • химические мутагены — вещества, вызывающие мутации,

  • физические мутагены — ионизирующие излучения, в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,

  • биологические мутагены — например, ретровирусы, ретротранспозоны.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные или точечные мутации

Это результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции («выпадение» одной или более пар нуклеотидов), замены нуклеотидных пар (AT -><- ГЦ; AT -><-; ЦГ; или AT -><- ТА), инверсии (переворот участка гена на 180°).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота —» —> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации или хромосомные абберации или хромасомные перестройки

Это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

  • нехватка, или дефишенсия, — потеря концевых участков хромосомы;

  • делеция — выпадение участка хромосомы в средней ее части;

  • дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

  • инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

  • транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

Геномные мутации

Это изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии.

Анеуплоидия или гетероплодия — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Спонтанные мутации

Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированные мутации

Индуцированный мутагенез — это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.

В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.

Закон гомологических рядов в наследственной изменчивости.

Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм — гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.

Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.

Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.

Панмиксия

Это свободное скрещивание особей в пределах популяции или какой-либо другой внутривидовой группы. О полной П. можно говорить лишь тогда, когда каждая особь имеет одинаковые возможности спаривания с любой особью противоположного пола. Однако в природе пары при скрещивании образуются не случайно. Выбор партнёров обусловлен преимущественно спариванием особей, схожих по поведению, физиологическим проявлениям и т. д. и совместно обитающих в какой-либо части ареала. В последнем случае отклонения от полной П. могут быть результатом близкородственного скрещивания — Инбридинга. Поэтому, говоря о П. в природных группах особей (прежде всего в популяциях), обычно имеют в виду ту или иную степень П., которая в пределах данной группы должна быть выше, чем между особями соседних групп. Степень П. колеблется у разных видов в зависимости от различий в характере размножения. У некоторых видов образуются длительные, иногда на всю жизнь, пары; др. виды образуют пары только на сезон размножения; есть виды, для которых образование стойких пар не характерно, например многие куриные; есть виды, у которых самки оплодотворяются 1 раз на протяжении всей жизни (многие насекомые, паукообразные); наконец, имеются виды с наружным оплодотворением (рыбы, земноводные), у которых пары не образуются и оплодотворение группы яйцеклеток может осуществляться смесью сперматозоидов разных самцов. Та или иная степень П. обеспечивает генетико-эволюционное единство внутривидовых группировок и вида в целом. Термин «П.» ввёл А. Вейсман в 1885.

Закон Харди — Вайнберга

Формулировка. Это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение.

Биологический смысл закона

Процесс наследования не влияет сам по себе на частоту аллелей в популяции, а возможные изменения её генетической структуры возникают вследствие других причин.

Условия действия закона

Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиктических и на которых не действуют факторы отбора.

Равновесие Харди — Вайнберга в реальных популяциях

На реальные популяции в той или иной степени действуют факторы, небезразличные для поддержания равновесия Харди — Вайнберга по каким-либо генетическим маркерам. В популяциях многих видов растений или животных распространены такие явления как инбридинг и самооплодотворение — в таких случаях происходит уменьшение доли или полное исчезновение класса гетерозигот (например — см. [3]). В случае сверхдоминирования наоборот, доли классов гомозигот будут меньше расчётных.

Практическое значение закона Харди — Вайнберга

В медицинской генетике закон Харди — Вайнберга позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребёнка.

В селекции — позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди — Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).

В экологии — позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчётных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определённого вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определённого металла в почве).

Эволюционная теория Ламарка или Ламаркизм

Ламаркизм — эволюционная концепция, основывающаяся на теории, выдвинутой в начале XIX века Жаном Батистом Ламарком в трактате Философия зоологии. Взгляды самого Ламарка достаточно сложны для понимания, поскольку базируются на ряде совершенно неинтерпретируемых в рамках современной науки концепций XVIII века.

  1. Первично, сотворённые Богом материя, как пассивное начало, и природа, как порядок и энергия для его осуществления.

  2. Концепция пяти элементов, из которых важнейшую роль играет эфир, в виде «тонких флюидов», циркулирующий в органических телах.

  3. Постоянное самопроизвольное зарождение жизни, в том числе ее сложных форм, из неорганической и органической материи.

  4. Отрицание вымирания видов.

  5. Отрицание наличия нервной системы и полового размножения у «низших животных» и т. п.

В связи с этим, современный «ламаркизм» напоминает их лишь в самых общих чертах. В широком смысле, к ламарксизму относят различные эволюционные теории (в основном, возникшие в XIX — первой трети XX веков), в которых в качестве основной движущей силы эволюции (изменения видов) рассматривается внутренне присущее организмам стремление к совершенствованию. Как правило, большое значение в таких теориях придается и влиянию «упражнения» и «неупражнения» органов на их эволюционные судьбы, поскольку предполагается, что последствия упражнения или неупражнения могут передаваться по наследству.

Принцип стремления к совершенству

Всех животных Ламарк распределил по шести ступеням, уровням (или, как он говорил, «градациям») по сложности их организации. Дальше всего от человека стоят инфузории, ближе всего к нему — млекопитающие. При этом всему живому присуще стремление развиваться от простого к сложному, продвигаться по «ступеням» вверх.

В живом мире постоянно происходит плавная эволюция. Исходя из этого, Ламарк пришёл к выводу, что видов в природе на самом деле не существует, есть только отдельные особи.

Ламарк последовательно применил в своей теории знаменитый принцип Лейбница: «Природа не делает скачков».

Отрицая существование видов, Ламарк ссылался на свой огромный опыт систематика:

«Только тот, кто долго и усиленно занимался определением видов и обращался к богатым коллекциям, может знать, до какой степени виды сливаются одни с другими. Я спрашиваю, какой опытный зоолог или ботаник не убеждён в основательности только что сказанного мною? Поднимитесь до рыб, рептилий, птиц, даже до млекопитающих, и вы увидите повсюду постепенные переходы между соседними видами и даже родами».

На вопрос о том, почему человек не замечает постоянного превращения одних видов в другие, Ламарк отвечал так: «Допустим, что человеческая жизнь длится не более одной секунды в сравнении с жизнью вселенной, в этом случае ни один человек, занявшийся созерцанием часовой стрелки, не увидит, как она выходит из своего положения». Даже через десятки поколений её движение не будет заметным.

Законы эволюции по Ламарку

Совершенствуясь, организмы вынуждены приспосабливаться к условиям внешней среды. Для объяснения этого учёный сформулировал несколько «законов». Прежде всего, это «закон упражнения и не упражнения органов». Наибольшую известность из примеров, приведённых Ламарком, приобрёл пример с жирафами. Жирафам приходится постоянно вытягивать шею, чтобы дотянуться до листьев, растущих у них над головой. Поэтому их шеи становятся длиннее, вытягиваются. Муравьеду, чтобы ловить муравьёв в глубине муравейника, приходится постоянно вытягивать язык, и тот становится длинным и тонким. С другой стороны, кроту под землёй глаза только мешают, и они постепенно исчезают.

Если орган часто упражняется, он развивается. Если орган не упражняется, он постепенно отмирает.

Другой «закон» Ламарка — «закон наследования приобретённых признаков». Полезные признаки, приобретённые животным, по мнению Ламарка, передаются потомству. Жирафы передали потомкам вытянутую шею, муравьеды унаследовали длинный язык, и так далее.

Применение принципов ламаркизма

В системах моделирования искусственной жизни ламаркизм в сочетании с «генетической памятью» довольно часто применяется для ускорения эволюции врождённого поведения, для этого вся память моделируемой особи передаётся её потомству. В отличие от классической генетической памяти потомству передаётся память только предыдущего поколения. При этом ламаркизм может совмещаться с дарвинизмом, который может использоваться для моделирования других аспектов моделей организмов.

Синтетическая теория эволюции

Синтетическая теория эволюции (также современный эволюционный синтез) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

Возникновение, развитие и историческое формирование СТЭ

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера, Джона Б. С. Холдейна-младшего и Сьюэла Райта, учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского и Ф. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера «The genetical theory of natural selection» (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:

  • мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;

  • рекомбинационного, создающего новые фенотипы особей;

  • селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием «The causes of evolution». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов, как граптолиты и фораминиферы. В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа.

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ — в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» — тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытое уравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путем.

В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского, Дж. Хаксли, Э. Майра, Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из русских учёных, по меньшей мере, следовало бы назвать И. И. Шмальгаузена, Н. В. Тимофеева-Ресовского, Г. Ф. Гаузе, Н. П. Дубинина, А. Л. Тахтаджяна. Из британских ученых велика роль Дж. Б. С. Холдейна-младшего, Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и других.

Основные положения СТЭ

В 1930—1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «Evolution: The Modern synthesis» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

Авторы синтетической теории расходились во мнениях по ряду фундаментальных проблем и работали в разных областях биологии, но они были практически единодушны в трактовке следующих основных положений:

  • элементарной единицей эволюции считается локальная популяция;

  • материалом для эволюции являются мутационная и рекомбинационная изменчивость;

  • естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;

  • дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;

  • вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;

  • видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution». Журнал «American Naturalist» вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя, который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чём они давно уже были уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis» (1942 год). Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии Провин так оценил труд Хаксли: «„Эволюция. Современный синтез“ была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе».

По объёму книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах ещё в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Ещё в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция — важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

  1. Мутации и естественный отбор — комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.

  2. Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.

  3. Репродуктивная изоляция — главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.

  4. Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространённые виды эволюционируют градуально, а малые изоляты — прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация, полиплоидия, хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) — компромисс между адаптивностью и нейтральностью.

  5. В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.

  6. Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.

  7. В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции. Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

И. И. Шмальгаузен был учеником А. Н. Северцова, однако уже в 20-е годы определился его самостоятельный путь. Он изучал количественные закономерности роста, генетику проявления признаков, саму генетику. Одним из первых Шмальгаузен осуществил синтез генетики и дарвинизма. Из огромного наследия И. И. Шмальгаузена особо выделяется его монография «Пути и закономерности эволюционного процесса» (1939). Впервые в истории науки он сформулировал принцип единства механизмов микро- и макроэволюции. Этот тезис не просто постулировался, а прямо следовал из его теории стабилизирующего отбора, который включает популяционно-генетические и макроэволюционные компоненты (автономизация онтогенеза) в ходе прогрессивной эволюции.

А. Л. Тахтаджян в монографической статье: «Соотношения онтогенеза и филогенеза у высших растений» (1943) не только активно включил ботанику в орбиту эволюционного синтеза, но фактически построил оригинальную онтогенетическую модель макроэволюции («мягкий сальтационизм»). Модель Тахтаджяна на ботаническом материале развивала многие замечательные идеи А. Н. Северцова, особенно теорию архаллаксисов (резкое, внезапное изменение органа на самых ранних стадиях его морфогенеза, приводящее к изменениям всего хода онтогенеза). Труднейшая проблема макроэволюции — разрывы между крупными таксонами, объяснялась Тахтаджяном ролью неотении в их происхождении. Неотения играла важную роль в происхождении многих высших таксономических групп, в том числе и цветковых. Травянистые растения произошли от древесных путем ярусной неотении.

Ещё в 1931 году С. Райтом была предложена концепция случайного дрейфа генов, которая говорит об абсолютно случайном формировании генофонда дема как малой выборки из генофонда всей популяции. Изначально дрейф генов оказался тем самым аргументом, которого очень долго не хватало для того, чтобы объяснить происхождение неадаптивных различий между таксонами. Поэтому идея дрейфа сразу стала близка широкому кругу биологов. Дж. Хаксли назвал дрейф «эффектом Райта» и считал его «наиболее важным из недавних таксономических открытий». Джордж Симпсон (1948) основал на дрейфе свою гипотезу квантовой эволюции, согласно которой популяция не может самостоятельно выйти из зоны притяжения адаптивного пика. Поэтому, чтобы попасть в неустойчивое промежуточное состояние, необходимо случайное, независящее от отбора генетическое событие — дрейф генов.

Однако вскоре энтузиазм по отношению к дрейфу генов ослаб. Причина интуитивно ясна: любое полностью случайное событие неповторимо и непроверяемо. Широкое цитирование работ С. Райта в современных эволюционных учебниках, излагающих исключительно синтетическую концепцию, нельзя объяснить иначе как стремлением осветить все разнообразие взглядов на эволюцию, игнорируя родство и различие между этими взглядами.

Экология популяций и сообществ вошла в эволюционную теорию благодаря синтезу закона Гаузе и генетико-географической модели видообразования. Репродуктивная изоляция была дополнена экологической нишей в качестве важнейшего критерия вида. При этом нишевый подход к виду и видообразованию оказался более общим, чем чисто генетический, так как он применим и к видам, не имеющим полового процесса.

Вхождение экологии в эволюционный синтез представляло собой заключительный этап формирования теории. С этого момента начался период использования СТЭ в практике систематики, генетики, селекции, продолжавшийся до развития молекулярной биологии и биохимической генетики.

С развитием новейших наук СТЭ начала вновь расширяться и модифицироваться. Быть может, важнейшим вкладом молекулярной генетики в теорию эволюции было разделение генов на регуляторные и структурные (модель Р. Бриттена и Э. Дэвидсона, 1971). Именно регуляторные гены контролируют возникновение репродуктивных изолирующих механизмов, которые изменяются независимо от энзимных генов и вызывают быстрые изменения (в масштабах геологического времени) на морфологическом и физиологическом уровнях.

Идея случайного изменения генных частот нашла применение в теории нейтральности ( Мотоо Кимура, 1985), которая выходит далеко за рамки традиционной синтетической теории, будучи созданной на фундаменте не классической, а молекулярной генетики. Нейтрализм основан на совершенно естественном положении: далеко не все мутации (изменения нуклеотидного ряда ДНК) приводят к изменению последовательности аминокислот в соответствующей молекуле белка. Те замены аминокислот, которые состоялись, не обязательно вызывают изменение формы белковой молекулы, а когда такое изменение все же происходит, оно не обязательно изменяет характер активности белка. Следовательно, многие мутантные гены выполняют те же функции, что и нормальные гены, отчего отбор по отношению к ним ведет себя полностью нейтрально. По этой причине исчезновение и закрепление мутаций в генофонде зависят чисто от случая: большинство их пропадает вскоре после появления, меньшинство остается и может существовать довольно долго. В результате отбору, оценивающему фенотипы, «по существу безразлично, какие генетические механизмы определяют развитие данной формы и соответствующей функции, характер молекулярной эволюции совершенно отличен от характера фенотипической эволюции» (Кимура, 1985).

Последнее высказывание, отражающее суть нейтрализма, никак не согласуется с идеологией синтетической теории эволюции, восходящей к концепции зародышевой плазмы А. Вейсмана, с которой началось развитие корпускулярной теории наследственности. Согласно взглядам Вейсмана, все факторы развития и роста находятся в половых клетках; соответственно, чтобы изменить организм, необходимо и достаточно изменить зародышевую плазму, то есть гены. В итоге теория нейтральности наследует концепцию генетического дрейфа, порожденную неодарвинизмом, но впоследствии им оставленную.

Появились новейшие теоретические разработки, позволившие еще больше приблизить СТЭ к реально существующим фактам и явлениям, которые ее первоначальная версия не могла объяснить. Достигнутые эволюционной биологией на настоящий момент рубежи отличаются от представленных ранее постулатов СТЭ:

Постулат о популяции как наименьшей эволюирующей единице остается в силе. Однако огромное количество организмов без полового процесса остается за рамками этого определения популяции, и в этом видится значительная неполнота синтетической теории эволюции.

  1. Естественный отбор не является единственным движителем эволюции.

  2. Эволюция далеко не всегда носит дивергентный характер.

  3. Эволюция не обязательно идет постепенно.

  4. Макроэволюция может идти как через микроэволюции, так и своими путями.

Сознавая недостаточность репродуктивного критерия вида, биологи все еще не могут предложить универсального определения вида как для форм с половым процессом, так и для агамных форм.

Случайный характер мутационной изменчивости не противоречит возможности существования определенной канализированности путей эволюции, возникающей как результат прошлой истории вида. Должна стать широко известной и теория номогенеза или эволюция на основе закономерностей, выдвинутая в 1922—1923 гг. Л.С. Бергом. Его дочь Р. Л. Берг рассмотрела проблему случайности и закономерности в эволюции и пришла к заключению, что «эволюция совершается по разрешенным путям» (Р. Л. Берг, «Генетика и эволюция», избранные труды, Новосибирск, Наука, 1993, стр.283).

Наряду с монофилией признается широкое распространение парафилии.

Уверенно можно сказать, что развитие СТЭ будет продолжаться с появлением новых открытий в области эволюции.

Дрейф генов или генетико-автоматические процессы

Это явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами. Приводит к снижению наследственной, изменчивости популяций. Отчётливо проявляется при резком сокращении численности популяции в результате стихийных бедствий (пожар, наводнение и др.), массового распространения вредителей и т. д.

Один из механизмов дрейфа генов заключается в следующем.

В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Характерная особенность динамики генотипической структуры популяций под действием Д. г. состоит в усилении процесса гомозиготизации, которая нарастает с уменьшением численности популяции. Это нарастание обусловлено тем, что в популяциях ограниченного размера увеличивается частота близкородственных скрещиваний (инбридинга), и в результате заметных случайных колебаний частот отдельных генов происходит закрепление одних аллелей при одновременной утрате других. Некоторые из гомозиготных форм в новых условиях среды могут оказаться приспособительно ценными. Они будут подхвачены отбором и смогут получить широкое распространение при последующем увеличении численности популяций.

Теория Д. г. разработана в начале 40-х годов 20 века амер. генетиком С. Райтом и независимо от него Д. Д. Ромашовым и Н. П. Дубининым (случайные колебания частоты генов были названы ими генетико-автоматическими процессами).

Эксперименты, осуществлённые позднее, показали, что даже в популяциях ограниченного размера определяющая роль в динамике частоты генов принадлежит естественному отбору. Обнаружение широкого полиморфизма по белкам дало основание ряду авторов снова утверждать, что на скорость генетических преобразований популяций влияют случайные факторы, а не естественный отбор.

Генетическая гетерогенность

Определяет приспособленность популяций к различным условиям среды обитания и создаёт резерв наследственной изменчивости. Гг присуща особям в пределах единого генофонда.

Вследствие генетических и морфофизиологических различий особей и неоднородности окружающей среды популяция имеет сложную структуру: особи различаются по полу, возрасту, принадлежности к разным, обычно перекрещивающимся поколениям, к разным фазам жизненного цикла, к тем или иным малоустойчивым группировкам внутри популяции (генеалогические группы, питомники, линии и семьи).

Ген

Это структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки ДНК, не входящую в геном организма.

Термин «ген» введен Вильгельмом Иогансеном в 1909 году.

Фен

Это генетически детерминированная, не разделяемая на составные компоненты без потери качественных свойств, вариация данного признака; по сути, фен – «элементарный» признак, кодируемый одним геном.

Термин «фен» введен Вильгельмом Иогансеном в 1909 году.

Геном

Это совокупность наследственного материала, заключенного в клетке организма. Геном содержит биологическую информацию, необходимую для построения и поддержания организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построены из ДНК, однако некоторые вирусы имеют геномы из РНК.

Геном - совокупность генетического материала гаплоидного набора хромосом данного вида.

У человека (Homo sapiens) геном состоит из 23 пар хромосом (22 аутосомные хромосомы, 2 половые X и Y) находящихся в ядре b митохондриальной ДНК.

Термин «геном» был предложен Гансом Винклером в 1920 году.

Вместе с факторами внешней среды, геном определяет фенотип организма.

Генотип

Это совокупность генов данного организма, характеризирующая особь.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена.

Отличия генотипа и фенотипа:

  • Источник информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

  • Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы (например, окраска шерсти животных) являются результатом взаимодействия нескольких генов по типу комплементарности.

Фенотип

Это совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом факторов внешней среды. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о следующих двух характеристиках фенотипа. Это - число направлений выноса характеризирующее число факторов среды, к которым чувствителен фенотип (это мерность фенотипа); и «дальность» выноса характеризующая степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, тем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.

Термин «фенотип» предложил датский ученый Вильгельм Иогансен в 1909 г.

Генофонд

Это совокупность генов, характеризующая вид.

Понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной. Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.

Одним из показателей объёма генофонда является эффективная величина популяции. Аллели всей популяции в идеальном случае распределены по закону Харди-Вайнберга.

Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем, если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций аллелей.

Кариотип

Это совокупность признаков (число, размеры, форма) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Биотип

Это группа особей вида, входящих в местную популяцию и сходных практически по всем признакам, в том числе и генетически.