Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Periodicheskie_reshenia_sistem_33__33__33.doc
Скачиваний:
66
Добавлен:
20.03.2015
Размер:
4.5 Mб
Скачать

§4 Принцип усреднения

Принцип усреднения — один из мощнейших методов теории возмущений. Суть его заключается в замене правых частей дифференциальных уравнений, содержащих "колеблющиеся" члены, усредненными "автономными" функциями, не содержащими явно времени t. Более подробно. Пусть, например, исходный процесс, описываемый дифференциальным уравнением, подвержен малым порядка ε возмущениям. Тогда в силу непрерывной зависимости решений от параметра в общем случае возмущения решений на фиксированном промежутке времени будут иметь тот же порядок малости, а именно ε. Если нас интересует поведение решений на больших, растущих с убыванием ε интервалах, то такого заключения уже сделать нельзя: к примеру на интервалах порядка 1/ε возмущения решений будут уже, как правило, конечными. Принцип усреднения предлагает рецепт, позволяющий заменить сложные возмущающие члены в уравнении более простыми (автономными) и при этом учесть основной вклад в процесс, вносимый этими возмущениями на временах порядка 1/ε.

Поясним сказанное на простейшем примере. Рассмотрим уравнение:

x′ = ε(t)x (1)

как малое возмущение уравнения:

x′ = 0 (2)

(ε — малый положительный параметр). Пусть φ и ψ — решения уравнений (1) и (2), удовлетворяющие начальному условию:

x(0) = 1. (3)

Нетрудно видеть, что φ и ψ близки при малых ε на любом промежутке

[0, T] и таковыми не являются на промежутке вида [0, T/ε] (см. рис. 1).

Рис. 1.

x′ = x, (4)

,

Задача 1. Пусть ξ — решение задачи (4), (3). Тогда

max{ : t [0, T/ε]} 0 при любом T > 0.

Таким образом, уравнение (4) более точно, нежели уравнение (2), учитывает специфику уравнения (1). В (4) учтен "дрейф" фазовой точки под воздействием малого осциллирующего воздействия. Другими словами, принцип усреднения позволяет заменять сложное уравнение (здесь (1)) более простым автономным уравнением (здесь (4)) и при этом сохранять близость между решениями на большем по сравнению с простым отбрасыванием возмущающих членов промежутке.

Основным объектом изучения в теории принципа усреднения является уравнение вида:

x′ = εf(t, x) (5)

в котором ε — малый параметр, а f, как обычно, действует из R × в . Такие уравнения с пропорциональной малому параметру правой частью называются в теории метода усреднения уравнениями в стандартной форме. К уравнениям в стандартной форме приводятся многие уравнения с параметром. Один из важнейших источников таких уравнений — теория нелинейных колебаний.

Например, рассмотрим уравнение линейного осциллятора, на который действует малая возмущающая нелинейная сила εf:

x′′ + x = εf(x, x′),

или, что эквивалентно, систему уравнений

x′ = y, y′ = – x + εf(x, x′). (6)

Невозмущенное уравнение (ε = 0), очевидно, имеет двупараметрическое семейство решений:

x(t) = acos(ωt + φ), y(t) = x′(t) (параметрами служат амплитуда и фаза φ).

Метод переменной фазы и амплитуды заключается в том, что решение возмущенного уравнения (6) ищут в том же виде:

x(t) = acos(ωt + φ), y(t) = ωasin(ωt + φ),

Предполагая, что a и φ являются неизвестными функциями времени. Несложные преобразования показывают, что a и φ удовлетворяют системе вида:

′ = εA(a, φ, t),

φ′ = εΦ(a, φ, t)

с периодически зависящими от параметра t функциями A и Φ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]