Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архитектура ЭВМ.doc
Скачиваний:
150
Добавлен:
19.03.2015
Размер:
1.3 Mб
Скачать

Модуль ввода/вывода

Структура приведенного на рис.28 модуля ввода/вывода (МВБ) обеспечивает толь­ко пояснение логики работы ВМ. В реальных ВМ реализация этого устройства машины может существенно отличаться от рассматриваемой. Задачей МВВ явля­ется обеспечение подключения к ВМ различных периферийных устройств (ПУ) и обмена информацией с ними. В рассматриваемом варианте МВВ состоит из де­шифратора номера порта ввода/вывода, множества портов ввода и множества пор­тов вывода.

Портом называют схему, ответственную за передачу информации из периферий­ного устройства ввода в аккумулятор АЛУ (порт ввода) или из аккумулятора на периферийное устройство вывода (порт вывода). Схема обеспечивает электричес­кое и логическое сопряжение ВМ с подключенным к нему периферийным устрой­ством.

В модуле ввода/вывода рассматриваемой ВМ предполагается, что каждое ПУ под­ключается к своему порту. Каждый порт имеет уникальный номер, который указы­вается в адресной части команд ввода/вывода. Дешифратор номера порта ввода/ вывода (ДВВ) обеспечивает преобразование номера порта в сигнал, разрешающий операцию ввода или вывода па соответствующем порте. Непосредственно ввод (вывод) происходит при поступлении из МПА сигнала Вв (Выв).

15. Реализация микроопераций и микропрограмм. Понятие о микрооперациях и микропрограммах

Для пояснения логики функционирования ВМ ее целесообразно представить в виде совокупности узлов, связанных между собой коммуникационной сетью (рис.29.). Процесс функционирования вычислительной машины состоит из последова­тельности пересылок информации между ее узлами и элементарных действий, выполняемых в узлах. Понятие узла здесь трактуется весьма широко: от регистра До АЛУ или основной памяти. Также широко следует понимать и термин «элемен­тарное действие». Это может быть установка регистра в некоторое состояние или выполнение операции в АЛУ. Любое элементарное действие производится при Поступлении соответствующего сигнала управления (СУ) из микропрограммного автомата устройства управления. Возможная частота формирования сигналов на

Рис. 29. Вычислительная машина с позиций микроопераций и сигналов управления

выходе автомата определяется синхронизирующими импульсами, поступающими от генератора тактовых импульсов (ГТИ). Элементарные пересылки или преобра­зования информации, выполняемые в течение одного такта сигналов синхрониза­ции, называются микрооперациями. В течение одного такта могут одновременно выполняться несколько микроопераций. Совокупность сигналов управления, вы­зывающих микрооперации, выполняемые в одном такте, называют микрокоман­дой. Относительно сложные действия, осуществляемые вычислительной машиной в процессе ее работы, реализуются как последовательность микроопераций и мо­гут быть заданы последовательностью микрокоманд, называемой микропрограм­мой. Реализует микропрограмму, то есть вырабатывает управляющие сигналы, за­даваемые ее микрокомандами, микропрограммный автомат (МГТА).

Способы записи микропрограмм

Для записи микропрограмм в компактной форме используются граф-схемы алго­ритмов и языки микропрограммирования.

Граф-схема алгоритма (ГСА) имеет вид ориентированного графа. При построении графа оперируют пятью типами вершин (рис. 30).

Начальная вершина (см. рис. 30, а) определяет начало микропрограммы и не имеет входов. Конечная вершина (см. рис.30, б) указывает конец микропрограммы, поэтому

Рис.30. Разновидности вершин граф-схемы алгоритма: а — начальная; 6 — конечная; в — операторная; г — условная; д — ждущая

имеет только вход. В операторную вершину (см. рис.30, в) вписывают мик­рооперации, выполняемые в течение одного машинного такта. С вершиной связа­ны один вход и один выход. Условная вершина (см. рис.30, г) используется для ветвления вычислительного процесса. Она имеет один вход и два выхода, соответ­ствующие позитивному («Да») и негативному («Нет») исходам проверки усло­вия, записанного в вершине. С помощью ждущей вершины (см. рис.30, д) можно описывать ожидание в работе устройств. В этом случае выход «Да» соответствует снятию причины, вызвавшей ожидание.

Граф-схемы алгоритмов составляются в соответствии со следующими прави­лами:

1. ГСА должна содержать одну начальную, одну конечную и конечное множество операторных и условных вершин.

2. Каждый выход вершины ГСА соединяется только с одним входом.

3. Входы и выходы различных вершин соединяются дугами, направленными от выхода к входу.

4. Для любой вершины ГСА существует, по крайней мере, один путь из этой вер­шины к конечной вершине, проходящий через операторные и условные верши­ны в направлении соединяющих их дуг.

5. В каждой операторной вершине записываются микрооперации у, соответству­ющие одной микрокоманде Y.

6. В каждой условной вершине записывается один из элементов множества логи­ческих условий х.

7. Начальной вершине ставится в соответствие фиктивный оператор уа, а конеч­ной — фиктивный оператор yk. На рис.31. показан пример микропрограммы, записанной на языке ГСА.

Рис. 31. Пример граф-схемы микропрограммы

В примере микрокоманда Ух инициирует микрооперации yt и у6, микрокоманда Y2микрооперациюу2, a F3- микрооперацииу3А5 и у7.