Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник по геологии.docx
Скачиваний:
41
Добавлен:
18.03.2015
Размер:
26.78 Mб
Скачать

1.2.5. Астероиды, кометы и метеориты

Астероиды— твердые космические тела, мертвые с геологической точки зрения, обладающие размерами, близкими к размерам малых спут­ников планет, образующие скопления между орбитами Марса и Юпи­тера на расстоянии от 1,7 до 4 АЕ Многие тысячи астероидов имеют размеры в несколько десятков километров, но есть и крупные: Церера (диаметр 1020 км), Веста (549 км), Паллада (538 км) и Гигея (450 км). Сейчас точно определены параметры орбит 66 тыс. астероидов, и коли­чество вновь открытых астероидов растет в геометрической прогрес­сии, удваиваясь каждые два года.

При столкновениях между собой астероиды дробятся и порождают метеориты, падающие на поверхность Земли. По-видимому, большая часть астероидов состоит из четырех видов пород, известных нам по составу метеоритов: 1) углистые хондриты, 2) класс S, или обыкновен­ные хондриты, 3) класс М, или железокаменные, и 4) редкие породы типа говардитов и эвкритов. О форме астероидов мы судим по сним­кам с космического аппарата «Галилео», на которых астероиды Гаспра (11x12x19 км), Ида (52 км в поперечнике), Эрос (33x13 км) имеют неправильную, угловатую форму и поверхность, испещренную крате­рами. На последнем с помощью космической станцииNEAR было об­наружено более 100 тыс. кратеров и около 1 млн каменных глыб разме­ром с большой дом. Плотность распределения кратеров позволяет предположить, что астероид Гаспра был отколот от более крупного тела примерно 200 млн лет назад. Размещение пояса астероидов между Марсом и Юпитером вряд ли является случайным. На этой орбите, согласно закону планетных расстояний Тициуса—Боде5, должна была бы находиться планета, которой даже дали имя — Фаэтон, но она раз­дробилась на осколки, являющиеся астероидами. Эта идея была выд­винута еще в 1804 г. немецким астрономом Г. Ольберсом, но она не раз­делялась его великими современниками В. Гершелем и П. Лапласом. Данное предположение сейчас считается наименее вероятным, а боль­шим признанием пользуется идея О. Ю. Шмидта, заключающаяся в том, что астероиды никогда не принадлежали распавшейся планете, а пред­ставляют собой куски материала, образовавшиеся в результате процес­сов первичной аккреции газово-пылевых частиц. Их дальнейшее сли­пание оказалось невозможным из-за сильного гравитационного возмущения со стороны огромного Юпитера, и уже сформировавшиеся крупные тела начали распадаться на более мелкие. Важно, что орбиты многих астероидов под влиянием гравитационных сил планет меняют свое положение. Особенно этому подвержены орбиты с большим эксен- триситетом, а также обладающие большими углами наклона к плоскости эклиптики. Такие астероиды пересекают орбиту Земли и могут с ней столкнуться. Из геологической истории известны падения крупных кос­мических тел на поверхность Земли, оставивших огромные кратеры — астроблемы («звездные раны»), сопровождавшиеся катастрофическими последствиями для биоты. В настоящее время известно более 100 крате­ров с диаметром свыше 80 км. Не исключена возможность столкновения астероида с Землей и в будущем, что будет иметь катастрофические по­следствия, поэтому ученые озабочены расчетами уточнения орбит асте­роидов, которые могут пролететь вблизи Земли или пересечься с ее ор­битой (а их количество превышает 200).

Вечером 23 марта 1989 г. совсем рядом с нашей планетой «просвистел» каменный астероид с поперечником около 800 м, и это при скорости 70 км в секунду! И несмотря на то, что «рядом» означает расстояние в два раза боль­шее, чем от Земли до Луны, с 1937 г., когда астероид Гермес пролетел пример­но на таком же расстоянии, подобных происшествий не наблюдалось. Астро­номы предсказывают, что астероид «1989РС» может вернуться, и если он столкнется с Землей, то последствия будут равны одновременному взрыву 1000 водородных бомб. Вероятность столкновения с «бродячим» астероидом выше, чем возможная гибель в автокатострофе. 18 марта 2004 г. астероид диа­метром 30 м прошел в 43 тыс. км от Земли. Это самое маленькое расстояние, которое наблюдалось за всю историю астрономических наблюдений.

Большое количество астероидов несет в себе угрозу всему живому на зем­ле. В 2002 г. было сделано предположение, что астероид 2002NT7, имеющий диаметр 2,03 км, объем 4,4 км3, массу — 11 млрд т и скорость 26,24 км/с, может столкнуться с Землей в феврале 2019 г. Это вызовет полное разру­шение в радиусе 250 км, а в радиусе 600 км будут сплошные пожары. Энер­гия подобного столкновения будет эквивалентна взрыву 1 млнMm троти­ла. Рассчитано, что астероид 2004MN4 диаметром более 300 м с вероятностью один шанс из 50 13 апреля 2029 г. может удариться о Землю.

Ядро кометы

Рис. 1.11. Схема строения кометы. Хвост кометы всегда направлен в сторону от Солнца

Кометыпредставляют собой малые тела Солнечной системы. Они состоят из ядра размером в несколько километров, состоящего из замер­зших газообразных соединений, в которые вкраплены микронные пыле­вые частицы, и так называемой комы — туманной оболочки, возникаю­щей при сублимации ледяного ядра, когда комета приближается к Солнцу. У кометы всегда виден хвост, направленный в сторону, противопо­ложную Солнцу (рис. 1.11). Солнечный ветер уносит частицы комы, которая может превышать в диаметре 105км. Нередко хвост кометы достигает в длину 108км, хотя его плотность невелика — 10'-- -103ионов/см3. В марте 1986 г. наши космические аппараты «Вега-1» и «Вега-2» прошли вблизи головной части кометы Галлея и установили, что ее ядро представляет собой темное, неправильное по форме тело, размером в поперечнике всего в несколько километров (рис. 1.12). В го­лове кометы Хейла — Бонна, которая была прекрасно видна в марте 1997 г. в России, обнаружены молекулы Н,0, СО, С02,Na, К,H2S, S02 и др.

Кома

Рис. 1.12. Положение кометы Галлея при сближении ее с Землей в марте 1986 г. Схема образования у нее плазменного хвоста (направлен от Солнца), пылевого хвоста (мельчайших частичек пыли) и пылевого шлейфа (более крупных частиц железосиликатной пыли, рассеивающихся вдоль кометной орбиты)

Движение комет характеризуется эллиптическими орбитами со зна­чительным эксцентриситетом, что обеспечивает большие периоды обра­щения, а влияние планет изменяет эти орбиты, и с долгопериодических (период обращения более 200 лет) они переходят на короткопериодичес- кие (менее 200 лет) орбиты.

Со временем ледяное ядро кометы уменьшается, становится более рых­лым, и оно может рассыпаться, образуя метеоритный поток. Знаменитый Тунгусский метеорит мог быть ледяным ядром кометы. Кометы блуждают по космическому пространству и могут то покидать Солнечную систему, то, наоборот, проникать в нее из других звездных систем. По своему хими­ческому составу кометы близки к планетам-гигантам и метеоритам типа углистых хондритов, о чем свидетельствует спектр комы комет. В апреле — мае 1997 г. жители Москвы и других городов России могли наблюдать ве­ликолепную комету Хейла — Боппа. В 1994 г. произошло столкновение об­ломков кометы Шумейкер — Леви с Юпитером, и астрономы запечатлели огромную «дыру» в атмосфере Юпитера. В 1986 г. космический аппарат «Джотто», приблизившись к комете Галлея, передал на Землю данные, сви­детельствующие о том, что комета содержит сложные органические моле­кулы, богатые водородом, кислородом, углеродом и азотом.

Существует несколько гипотез происхождения комет, но наиболь­шей поддержкой пользуется гипотеза их конденсации из первичного протосолнечного газопылевого облака и последующего перемещения комет в пределы облака Оорта под влиянием гравитации Юпитера и

других планет-гигантов. Количество комет в облаке Оорта оценивается в сотни миллиардов.

Метеориты— твердые тела космического происхождения, достига­ющие поверхности планет и при ударе образующие кратеры различно­го размера. Источником метеоритов является в основном пояс астерои­дов. Когда метеорит входит с большой скоростью в атмосферу Земли, его поверхностные слои, разогреваясь, могут расплавиться и метеорит «сгорит», не достигнув Земли. Однако некоторые метеориты падают на Землю, и благодаря огромной скорости их внутренние части не претер­певают изменений, т. к. зона прогрева очень мала. Размеры метеоритов колеблются от нескольких микрон до нескольких метров, вес их быва­ет десятки тонн. 11 июня 2004 г. в Новой Зеландии метеорит размером с грейпфрут пробил крышу дома и «приземлился» на диване, где и был подобран хозяйкой.

Все метеориты по своему химическому составу подразделяются на три класса: 1) каменные, наиболее распространенные, 2) железокамен- ные и 3) железные.

Каменные метеоритыявляются наиболее распространенными (64,9 % всех находок). Среди них различают хондриты и ахондриты. Хондриты получили свое название благодаря наличию мелких сферических сили­катных обособлений — хондр, занимающих более 50 % объема породы. Чаще всего хондры состоят из оливина, пироксена, плагиоклаза и стекла (рис. 1.13). Химический состав хондритов позволяет предполагать, что они произошли из первичного, протопланетного, вещества Солнечной системы, отражая его состав времени формирования планет, их аккре­ции. Это подтверждается сходством отношений основных химических элементов и элементов примесей для хондритов и в спектре Солнца. Со­держаниеSi02 в хондритах — меньше 45 % — сближает их с земными ультраосновными породами. Хондриты подразделяются по общему со­держанию железа на ряд типов, среди которых наибольший интерес пред­ставляют углистые хондриты,содержащие больше всего железа, находя­щегося в силикатах. Кроме того, в углистых хондритах присутствует много (до 10 %) органического вещества, которое имеет, однако, не биогенное происхождение. Кроме минералов типа оливина, ортопироксена, плаги­оклаза, типичных и для земных пород, в хондритах присутствуют мине­ралы, встречающиеся только в метеоритах.

Ахондритыне содержат хондр и по составу близки к земным маг­матическим ультраосновным породам. Ахондриты подразделяются на богатые Са (до 25 %) и бедные Са (до 3 %).

Железныеметеориты по распространенности занимают второе ме­сто и представляют собой твердый раствор никеля в железе. Содержа­ние никеля колеблется в широких пределах, и на этом основано разде-

Рис. 1.13. Кварцевая хондра (диаметр около 2 мм) в кварц-железо-энстатиновой матрице метеорита St. Mark (Кинг, 1979)

ление метеоритов на различные типы. Самыми распространенными являются октаэдриты с содержанием никеля от 6 до 14 %. Они характе­ризуются так называемой видманштеттеновой структурой, состоящей из пластин камасита (никелистое железо, Ni - 6 %), расположенных параллельно граням октаэдра и заполняющих между ними простран­ство тэнитом (никелистое железо,Ni - 30 %). Судя по тому что в же­лезных метеоритах хорошо выражены деформации ударного типа, ме­теориты испытывали столкновения и сильные удары (рис. 1.14).

Железокаменные метеоритыпо распространенности занимают тре­тье место и состоят они как из никелистого железа, так и из силикатно­го каменного материала, представленного в основном оливином, орто- пироксеном и плагиоклазом. Этот силикатный материал вкраплен, как в губку, в никелистое железо, или, наоборот, никелистое железо вкрап­лено в силикатную основу. Все это свидетельсвует о том, что вещество железокаменных метеоритов прошло дифференциацию.

Возраст метеоритов,определенный радиоизотопными уран-свин­цовым и рубидий-стронциевым методами, — 4,4-4,7 • 109лет. Такие цифры соответствуют принятому возрасту формирования Солнечной системы, что свидетельствует в пользу одновременного образования планет и тех тел, из которых впоследствии возникли метеориты. После тогокакобломок отделяется от родительского тела и превращается в метеорит, он облучается космическими лучами, следовательно, кос­мический возраст собственно метеорита намного меньше возраста ро­дительской породы.

Рис. 1.14.Образование метеоритов. 1 — газопылевое облако; 2 — аккреция в тела размером в несколько метров (планетезимали); 3 — аккреция планетезималей в тела размером 10-200 км; 4 — плавление и дифференциация; 5 — базальты; 6 — силикаты; 7 — железо; 8 — дробление при ударе. Обломки: 9 — железокаменные; 10 — каменные; И — железные; 12 — крупный метеорит; 13 — дробление; 14 — более мелкий метеорит

Происхождение метеоритов— важнейшая проблема, относительно ко­торой существует несколько точек зрения. Наиболее распространенная гипо­теза говорит о происхождении метеоритов за счет астероидов в поясе между Марсом и Юпитером. Предполагается, что астероиды в разных частях пояса могли иметь различный состав, и, кроме того, в начале своего образования они подвергались нагреву, возможно, частичному плавлению и дифферен­циации. Поэтому хондриты, ахондриты, углистые хондриты соответствуют различным участкам раздробившегося родительского астероида. Однако часть метеоритов общим весом более 2 кг, и это уверенно доказано, проис­ходит с поверхности Луны, и еще больше, около 80 кг, с поверхности Мар­са. Метеориты лунного происхождения полностью тождественны по мине­ралогическому составу, изотопным и структурным характеристикам лунным породам, собранным на поверхности Луны астронавтами или доставлен­ным автоматическими станциями.

Метеориты с Марса, общим числом 12, частично были найдены в XIX в., а частично в наши дни, в частности в Антарктиде в 1984 г. Знаменитый метеорит ALH 84001 весом 1930,9 г был выбит с поверх­ности Марса сильным ударом 16 млн лет назад, а в Антарктиду он попал 13000 лет назад, где недавно вытаял из льда и был подобран исследователями.

Таким образом, общая хронология событий такова: 4,5 млрд лет назад одновременно с Землей возникает Марс; 1,5 млн лет назадпри столкнове­нии с астероидом от Марса отрывается осколок и улетает в межпланетное пространство; 13 тыс. лет назадосколок Марса попадает в сферу притяже­ния Земли и падает в Антарктиде; в 1984 г.американцы обнаруживают метеорит и дают ему названиеALH 84001; в 1994 г.геохимики идентифи­цируют метеорит как осколок Марса; в 1996 г.ученые обнаружили органи­ческие молекулы, которые считают древними формами жизни на Марсе.

Именно в этом метеорите были обнаружены мельчайшие — 2-10 6- -10-10~6см — цианобактерии, располагающиеся внутри глобул, состо­ящих из сульфидов и сульфатов железа и окислов, возраст которых определен в 3,6 млрд лет. То есть это несомненно марсианские поро­ды, т. к. изотопный состав кислорода и углерода глобул идентичен таковым в марсианских газах, определенных в породах Марса на его поверхности космическим аппаратом «Викинг» в 1976 г. Палеонто­лог А. Ю. Розанов считает, что в углистых хондритах есть микроорга­низмы.