Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник по геологии.docx
Скачиваний:
41
Добавлен:
18.03.2015
Размер:
26.78 Mб
Скачать

12.6. Причины возникновения оледенений

Выше уже говорилось о том, что в геологической истории Земли, по крайней мере с раннего протерозоя, неоднократно проявлялись хо­лодные эпохи, во время которых возникали обширные ледниковые по­кровы, чаще всего в пределах ряда материков или их частей. Однако наличие ледникового покрова является только одной из составляющих «ледникового периода», в который входят и мерзлые породы верхней части земной коры, а также огромные массивы плавучих морских льдов. Причины изменения климата в глобальном масштабе, как и причины появления покровных ледников на больших пространствах материков, все еще остаются предметом оживленных дискуссий, хотя поле для маневров сужается, т. к. сейчас достаточно широко стали применяться

17 УМ математические модели, которым свойственны определенные рамки, выйти за которые не позволяют фактические данные.

Пожалуй, наибольшим признанием в настоящее время пользуется астрономическая теория палеоклимата, возникшая около 150 лет тому назад, когда стало известно о циклических изменениях элементов ор­биты Земли.

Наиболее убедительно эта теория была обоснована югославским уче­ным М. Миланковичем, впервые рассчитавшим изменения солнечной радиации, приходящей на верхнюю границу атмосферы за последние 600 тыс. лет. В русском переводе его книга «Математическая климато­логия и астрономическая теория колебаний климата» вышла в 1939 г. В ней решающее значение для изменений климата придается цикли­ческим изменениям основных параметров орбиты Земли: 1) эксцент­риситет «е» с периодом в 100 тыс. лет; 2) наклон плоскости экватора Земли к плоскости эклиптики (плоскости орбиты Земли) «Е» с периодичностью примерно 41 тыс. лет и 3) период предварения равно­денствий, или период процессии, т. е. изменения расстояния Земли от Солнца, который не остается постоянным. В перигелии Земля ближе всего к Солнцу, а в афелии — дальше всего от Солнца. Период процес­сии равен примерно 23 тыс. лет.

Понятно, что, находясь в афелии, Земля имеет наибольшее удаление от Солнца, поэтому в Северном полушарии лето будет длительным, но прохладным, т. к. Земля будет обращена к Солнцу Северным полушари­ем. Через полупериод цикла процессии, т. е. через 11 500 лет к Солнцу будет обращено уже Южное полушарие, а в Северном лето будет жар­ким, но коротким, тогда как зима будет холодной и продолжительной. Подобные различия в климате будут тем резче, чем больше эксцентри­ситет «е» орбиты Земли. Широтное распределение солнечной радиации на Земле сильнее всего зависит от наклона земной оси по отношению к плоскости эклиптики, т. е. от угла «Е». Наиболее значимые относитель­ные изменения радиации или инсоляции будут происходить в высоких широтах. Если угол наклона «Е» уменьшается, то это в высоких широтах может привести, по М. Миланковичу, к уменьшению солнечной радиа­ции и, следовательно, к увеличению площади ледников или к их возник­новению. Для этого процесса, как полагал М. Миланкович, необходимо длительное и прохладное лето, в течение которого не успевал растаять снег, накопившийся мягкой, но короткой зимой.

На мощность, или величину, солнечной радиации влияет эксцент­риситет орбиты Земли, но не наклон оси вращения Земли к эклиптике и не прецессия земной оси. В последних двух случаях среднегодовое количество солнечной радиации, поступающей на Землю, остается по­стоянным. Однако происходит ее перераспределение по сезонам или широтам. И только изменение эксцентриситета влечет за собой изме­нение среднегодового количества солнечной радиации, т. к. при орбите, близкой к круговой, расстояние (среднее) от Земли до Солнца наи­большее, а следовательно, солнечная радиация минимальна. Если ве­личина «е» увеличивается, т. е. орбита Земли становится более узкой и поэтому среднее расстояние от Земли до Солнца уменьшается, то солнечная радиация возрастает. М. Миланкович построил инфляци­онные (радиационные) диаграммы, на которых показал изменение сол­нечной радиации во времени для различных географических широт.

Впоследствии были установлены некоторые разночтения этой кривой с кривыми, полученными по изотопно-кислородным данным при изучении донных осадков океанов. Но в целом гипотеза М. Миланковича довольно аргументированно объясняет возникновение великих четвертичных оледе­нений.

В то же время выявляется еще целый ряд факторов, как экзогенных, так и эндогенных, которые могут вызывать климатические изменения, вместе с изменениями орбитальных параметров Земли, наклона ее оси, темпов дегазации планеты. Значительные колебания глобальной темпе­ратуры приземного слоя атмосферы могут вызываться изменением со­держания С02и различных аэрозолей в воздухе. Только удвоение С02 по отношению к современному (0,03 %) способно повысить температуру воздуха на 3 "С из-за парникового эффекта, открытого в 1824 г. фран­цузским математиком Ж. Фурье, который, пропуская на поверхность Земли коротковолновую солнечную радиацию, нагревающую поверхность Земли, одновременно задерживает тепло, отраженное от земной поверх­ности, тем самым нагревая приземный слой воздуха. Расчеты не дают ясного ответа на вопрос, на сколько надо уменьшить содержание С02в атмосфере, чтобы наступило сильное похолодание. Изучение содержа­ния С02в керне льда из глубоких скважин в Антарктиде показало, что во время максимума валдайского позднеплейстоценового оледенения оно было на 25 % ниже, чем в голоцене, т. е. в последние 10 тыс. лет. За последние 100 лет средняя температура на земном шаре возросла на 0,6-0,8 "С. Наблюдается четкая корреляция между ростом содержания С02, СН4и других парниковых газов и температурой (рис. 12.21). Вино­ваты ли в этом техногенные процессы, пока остается не очень ясным, хотя почти все исследователи склоняются к такой зависимости. Повы­шение температуры привело к очень быстрой и повсеместной деграда­ции ледников. Например, самый крупный ледник, в Африке на горе Кения, уменьшился на 92 %, а на горе Килиманджаро — на 82 %; в Гима­лаях ледники резко сокращаются, так же как в Альпах, на Кавказе, где за последние 100 лет ледники уменьшились на 50 %. В Гренландии ис­тончается ледяной щит.

На Большом Кавказе за последние 150 лет ледники сильно уменьши­лись как в длину, так и по мощности (рис. 12.22, 12.23).

Годы

Рис. 12.21. Изменения некоторых параметров приземной атмосферы. 1 — температура; 2 — содержание углекислого газа; 3 — содержание метана.

По разным источникам

Годы

Рис. 12.22. Вулкан Эльбрус. Ледник Терскол. Хорошо виден след от положения ледника 150 лет назад (фото Н. В. Короновского)

Несомненно, на климатические изменения влияет и океан, огром­ные массы воды которого, циркулируя, переносят как холод, так и тепло. Всего лишь в 3-метровом слое воды в океанах содержится запас тепла, равный теплу всей атмосферы. Океаны, как тепловые машины, перекачивают тепло туда, где его не достает. Особенно важно терми­ческое состояние глубоких уровней океанских вод, когда тяжелые при­донные воды охлаждаются до температуры ниже 5-8 °С, что совпада­ет с периодами похолоданий климата, тогда как образование очень соленых и теплых придонных вод отвечает теплым климатическим периодам. Это состояние резко отличается от современной океанской циркуляции. Собственно эвстатические колебания уровня воды в оке­ане влияют на распределение течений, так же как и перемещение ли­тосферных плит. Однако сами по себе эти явления не могут вызвать глобальных изменений климата. Для этого необходимы более весо­мые причины — астрономические, на которые могут влиять: усили­вать или, наоборот, ослаблять их — перечисленные выше факторы, в том числе эпохи энергичного горообразования, когда большие райо­ны поверхности земного шара поднимались выше снеговой линии и формировались горно-долинные ледники.

Рис. 12.23. Деградация ледника Большой Азау у подножия Эльбруса, Большой Кавказ. Рисунки Г. А. Абиха, сделанные с одной точки: а — 21 октября 1849 г.;

б - 1873 г.

В заключение следует отметить, что проблема возникновения по­кровных оледенений находится в ряду многих проблем глобального изменения климата, которые в наши дни приобрели особое значение в связи с быстрым техногенным изменением, и не в лучшую сторону, природной среды, в том числе геологической. 1