Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Огнев.doc
Скачиваний:
35
Добавлен:
17.03.2015
Размер:
562.69 Кб
Скачать

Квантовая электродинамика

Исторически первой физической теорией, созданной на основе этих представлений, стала квантовая электродинамика, построенная в конце 1940-х гг. С. Томонагой, Р. Фейнманоми Дж. Швингером. Она описывает процессы электромагнитного взаимодействия, в которых участвуют элементарные электрически заряженные частицы:электроны(и/или их античастицы — позитроны) и гамма-кванты (частными примерами которых являются видимый свет, радиоволны и гамма-излучение, испускаемое радиоактивными ядрами). Первые из них имеют спин 1/2 и отличную от нуля массу, одинаковую для электронов и позитронов. Вторые характеризуются спином, равным единице и нулевой массой.

Простейшим примером электромагнитных процессов является рассеяние одного электрона (позитрона) на другом, происходящее с обменом гамма-квантом. Очевидно, что он физически эквивалентен процессу обычного кулоновского рассеяния, при этом обменный гамма-квант, не регистрируемый явно на эксперименте, называют виртуальным. Именно с такими квантами связывается кулоновское поле, при этом свойство его дальнодействия (точнее, бесконечного радиуса действия) есть прямое следствие того, что масса гамма-кванта равна нулю. Другим важным примером является процесс рождения электрон-позитронной пары из гамма-кванта в кулоновском поле ядер атомов или обратный этому процесс аннигиляции позитрона с электроном с рождением двух или трех гамма-квантов.

Для описания таких элементарных и более сложных процессов в квантовой электродинамике была разработана специальная техника фейнмановских диаграмм — графических рисунков, на которых свободные частицы описываются линиями, а их взаимодействие — пересечениями линий, узлами. Устанавливается строгое соответствие между диаграммой (любой степени сложности) и математическим выражением, которое позволяет рассчитать все физические характеристики описываемого этой диаграммой процесса. При этом элементарный акт электромагнитного взаимодействия, соответствующий рождению электроном (позитроном) реального или виртуального гамма-кванта, связывается с электрическим зарядом электрона е. При расчете физических характеристик процессов это приводит к появлению в их выражениях базовой константы электромагнитного взаимодействия б («постоянная тонкой структуры»), имеющей величину α = е2/4πђc= 1/137,0360037(33). Эта универсальная константа фактически определяет силу электромагнитного взаимодействия и является его главной характеристикой.

Квантовая теория слабого взаимодействия

Построенная позже, в середине 1960-х гг., квантовая теория слабого взаимодействия во многом аналогична квантовой электродинамике. К слабым процессам в физике относят процессы бета-распада ядер и элементарных частиц (например, нейтрона), в которых происходит рождение электрон-нейтринных (точнее, антинейтринных) или позитрон-нейтринных пар, процессы захвата ядрами электронов или мюонов, а также процессы рассеяния нейтрино на электронах, протонах или ядрах атомов (существуют также аналогичные процессы слабого рассеяния электронов). С точки зрения КТП элементарным актом слабого взаимодействия является процесс рождения нуклоном (протоном или нейтроном) или электроном (мюоном, тау-мезоном) тяжелого заряженного (W+, W-) или нейтрального (Z0) бозона, который затем мгновенно распадается на пару легких частиц, наблюдаемых в этом процессе экспериментально.

При этом тяжелый промежуточный бозон служит в слабом процессе таким же передаточным звеном, каким в электромагнитном процессе является виртуальный гамма-квант. Однако, в отличие от последнего, бозоны имеют большую массу, и радиус их взаимодействия оказывается чрезвычайно малым, порядка 10-17 см. Это и есть радиус слабого взаимодействия. Вместе с тем тот факт, что физическая картина электромагнитного и слабого взаимодействий оказывается аналогичной, позволил физикам создать объединенную теорию, в которой оба взаимодействия при высоких энергиях частиц соединяются в единое, электрослабое. Различие между ними возникает при переходе от больших энергий к малым, в области же высоких энергий оно практически исчезает. При этом все четыре бозона (γ−квант, W+, W-, и Z0-бозон), ответственных за процессы переноса обменных полей, становятся членом единого семейства, обладающего определенной внутренней симметрией и соответствующими ей зарядами.