Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1 курс / Химия / Физическая,_коллоидная_химия_и_химия_высокомолекулярных_соединений

.pdf
Скачиваний:
31
Добавлен:
24.03.2024
Размер:
1.33 Mб
Скачать

11

Рассмотрим изотерму адсорбции Гиббса (Рис. 2):

Г

Г

с

с

Рис. 2. Изотерма адсорбции Гиббса.

Из графика видно, что по мере увеличения концентрации вещества адсорбция возрастает вначале резко, а затем всѐ медленнее и медленнее, асимптотически приближаясь к некоторой величине предельной адсорбции Г. Существование предельного значения адсорбции понятно, так как поверхность раствора имеет определѐнную площадь и при достижении определѐнной концентрации ПАВ в растворе (С∞) она оказывается полностью занятой молекулами ПАВ. Поскольку адсорбция мономолекулярна (однослойна), дальнейшее увеличение концентрации ПАВ в растворе ничего не может изменить в поверхностном слое.

ОРИЕНТАЦИЯ МОЛЕКУЛ ПАВ В ПОВЕРХНОСТНОМ СЛОЕ В 1915 г Ленгмюр ввел понятие об ориентации молекул ПАВ в

поверхностном слое.

[Ленгмюр Ирвинг (1881-1957), американский физик и физико-химик. Труды по электрическим разрядам в газах, термоэлектронной эмиссии, вакуумной технике и др. Исследовал поверхностные явления (адсорбция, мономолекурные слои и др.). Нобелевская премия (1932).]

Исходя из строения молекул ПАВ, Ленгмюр сформулировал принцип независимости поверхностного действия, заключающийся в том, что при адсорбции полярная группа молекулы, обладающая большим сродством к полярной фазе, втягивается в воду, в то время как неполярный радикал выталкивается в неполярную фазу. Происходящее при этом уменьшение свободной поверхностной энергии ограничивает размеры поверхностного слоя толщиной в одну молекулу. Образуется мономолекулярный слой.

При малых концентрациях ПАВ углеводородные радикалы «лежат» на поверхности полярной жидкости, а полярные группировки погружены в неѐ. Затем по мере роста концентрации ПАВ, они (неполярные радикалы) начинают подниматься. В насыщенном адсорбционном слое поверхность воды оказывается сплошь покрытой «частоколом Ленгмюра» из вертикально ориентированных молекул ПАВ. Значение поверхностного натяжения в этом случае приближается к значению, характерному для чистого ПАВ на границе с воздухом.

11

12

А) малые концентрации ПАВ

Б) умеренные концентрации

В) насыщенный адсорбционный слой

Рис. 3. Ориентация молекул ПАВ на поверхности водного раствора.

Из-за вертикальной ориентации ПАВ в поверхностном слое максимальная адсорбция (Г) не зависит от длины «хвоста» (длины углеродного радикала), а определяется только размерами поперечного сечения молекулы, которые в гомологическом ряду остаются неизменными. Экспериментально найденная величина Гдаѐт возможность вычислить поперечный размер молекулы S0:

S0

=

1

 

N A

 

 

Представления об ориентации молекул ПАВ в насыщенном адсорбционном слое сыграли большую роль в развитии учения о структуре биологических мембран.

Клеточные мембраны образованы главным образом молекулами двух типов: липидами и белками.

Липиды не растворимы в воде, но растворимы в органических растворителях. Особенностью мембранных липидов является то, что на одном конце их молекулы есть полярные группы (например –СООН), обладающие гидрофильными свойствами, тогда как другой еѐ конец представляет собой длинную углеводородную цепь с гидрофобными свойствами.

Липиды биомембран расположены двумя слоями. Обычно говорят о двухслойной структуре. Каждый (моно) слой состоит из сложных липидов (и иногда холестерина), расположенных таким образом, что неполярные гидрофобные хвосты молекул находятся в тесном контакте друг с другом; в таком же контакте полярные гидрофильные элементы. Все взаимодействия имеют исключительно нековалентный характер. Два монослоя совмещаются, ориентируясь «хвост к хвосту», так, что образуется структура двойного слоя,

имеющая неполярную внутреннюю часть и две полярные поверхности.

Толщина липидного слоя примерно 3,5 – 4 нм.

Молекулы белка могут располагаться вблизи внешней и внутренней поверхностей мембраны, а также проникать, частично или полностью, через всю еѐ толщину.

Обычно клеточные мембраны весьма прочны и обладают свойствами электрического изолятора. Биологические мембраны не являются жесткими структурами. Например, во многих случаях белки и липиды внутри мембран находятся в постоянном движении.

12

13

АДСОРБЦИЯ НА НЕПОДВИЖНОЙ ГРАНИЦЕ РАЗДЕЛА ФАЗ

(НА ПОВЕРХНОСТИ ТВЁРДОГО ВЕЩЕСТВА)

Под адсорбцией на неподвижной границе раздела фаз понимается накопление одного вещества на поверхности другого.

Твѐрдое вещество, на поверхности которого накапливается другое вещество, называется адсорбентом, а поглощаемое вещество – адсорбтивом. Уже адсорбированное вещество называется адсорбатом.

В зависимости от природы сил, действующих между адсорбентом и адсорбатом различают физическую и химическую адсорбции.

Физическая адсорбция обусловлена межмолекулярным взаимодействием за счѐт сил Ван-дер-Ваальса (ориентационных, индукционных и дисперсионных) или водородной связью. Поэтому для этого вида адсорбции характерны: обратимость, неспецефичность, экзотермичность.

[Ван-дер-Ваальс Ян Дидерик (1837-1923), нидерландский физик. Профессор физики университета в Амстердаме. Сформулировал уравнение состояния реального газа, в равной степени применимое к жидкости и к газу и т.д. Внѐс значительный вклад в термодинамическую теорию капиллярности. Нобелевская премия (1910)].

Химическая адсорбция осуществляется при взаимодействии адсорбента с адсорбатом с образованием химической связи. Энергия возникающих при этом связей 40 – 400 кДж/моль. Хемсорбция практически необратима, специфична и локализована. Повышение температуры усиливает химическую адсорбцию.

АДСОРБЦИЯ НА ТВЁРДЫХ ПОВЕРНОСТЯХ

УДЕЛЬНАЯ АДСОРБЦИЯ

При адсорбции веществ на поверхности твѐрдых адсорбентов изменяется химический состав поверхности адсорбента. Количественной характеристикой этого процесса является величина удельной адсорбции Г.

Удельная адсорбция – это равновесное количество поглощаемого вещества, приходящееся на единицу поверхности или массы адсорбента.

В качестве адсорбентов обычно применяют мелкоизмельченные вещества или пористые тела, что обеспечивает большую площадь поверхности раздела фаз, которую определить практически невозможно. Поэтому удельная адсорбция для твердых адсорбентов преимущественно выражается в молях поглощенного вещества на единицу массы адсорбента:

Г = (моль/г),

где n –количество адсорбата, моль; m – масса адсорбента, г.

13

14

Адсорбция газов и паров адсорбата на твердых адсорбентах – процесс, протекающий за счет сил Ван-дер-Ваальса и водородных связей. Количество поглощенного газа или пара на твѐрдых поверхностях зависит от следующих факторов.

1.От свободной поверхностной энергии адсорбента. Она весьма велика у адсорбентов с аморфной структурой (активированный уголь) и у кристаллических веществ (оксиды алюминия, кремния). Адсорбент тем эффективнее, чем меньше измельчен.

2.От сродства адсорбтива к поверхности адсорбента. Полярные вещества лучше адсорбируются на полярных адсорбентах, а неполярные на неполярных. Чем больше адсорбент склонен к межмолекулярным взаимодействиям, тем интенсивнее идет адсорбция.

3.При физической адсорбции из смеси газов или паров лучше адсорбируется тот компонент, который легче сжимается, поскольку его молекулы более склонны к межмолекулярным взаимодействиям.

4.От концентрации адсорбата. Зависимость имеет сложный характер, так как с адсорбцией идет одновременно процесс десорбции. При равенстве скоростей этих процессов наступает равновесие.

ТЕОРИЯ МОНОМОЛЕКУЛЯРНОЙ АДСОРБЦИИ ЛЕНГМЮРА. УРАВНЕНИЕ ЛЕНГМЮРА

Изучая адсорбцию на твердых поверхностях Ленгмюр предложил теорию мономолекулярной адсорбции и уравнение адсорбции. Основные положения теории Ленгмюра следующие:

адсорбция молекул происходит не на всей поверхности адсорбента, а только на адсорбционных центрах, где имеются участки с наиболее нескомпенсированными силовыми полями;

каждый адсорбционный центр может удерживать только одну молекулу адсорбата, при этом адсорбированные молекулы не взаимодействуют со свободными молекулами, что приводит к образованию мономолекулярного слоя поглощаемого вещества;

процесс адсорбции обратим и носит динамический характер, т.к. адсорбированные молекулы удерживаются адсорбционными центрами только в течение определенного промежутка времени, после чего происходит десорбция этих молекул и адсорбция такого же числа новых молекул.

Исходя из этих положений, Ленгмюр предложил уравнение адсорбции:

14

15

Г =

Kc

 

1 Kc

 

Где Г- значение предельной адсорбции; с – равновесная концентрация адсорбента в системе; К – константа адсорбционного равновесия.

Зависимость адсорбции от концентрации ПАВ (изотерма адсорбции) имеет вид:

α

α

 

 

 

 

 

III

 

 

II

 

I

 

с

 

 

 

 

 

с

Рис. 4. Зависимость адсорбции от концентрации ПАВ

На кривой четко видны три участка:

I - ый участок – это прямая линия, выходящая из начала координат. Действительно, при малых концентрациях, когда с → 0 и (1 + Кс) ≈1, уравнение принимает вид Г = Г∙Кс, т.е. величина адсорбции прямо пропорциональна концентрации или давлению адсорбата.

III – участок – соответствует прямой, параллельной оси абсцисс, что означает, что адсорбция достигла своего предельного значения. При этом Кс ›› 1 и (1 + Кс) ≈ Кс, тогда Г = Г(произошло насыщение поверхности адсорбента молекулами адсорбата, так как сформировался мономолекулярный слой).

II – ой участок соответствует криволинейной части графика и описывается полным уравнением Ленгмюра.

АДСОРБЦИЯ НА ГРАНИЦЕ ТВЕРДОЕ ТЕЛО – ЖИДКОСТЬ

Существенным отличием адсорбции веществ из растворов является конкуренция между растворенным веществом и растворителем за возможность взаимодействовать с адсорбционными центрами на поверхности твердого адсорбента. Рассматривая этот вид адсорбции, остановимся на следующем:

1.При адсорбции из раствора важным фактором является величина удельной поверхности адсорбента и его сродство к поглощаемому веществу. Гидрофильные адсорбенты (силикагель, глины, пористые стекла) хорошо поглощают полярные вещества, а гидрофобные (сажа, активированный уголь) -–неполярные вещества.

2.Природа растворителя:

15

16

Чем хуже данный растворитель смачивает поверхность адсорбента и чем хуже растворяет вещество, тем лучше будет происходить адсорбция растворенного вещества.

3.Природа поглощаемого вещества:

а) выполняется правило «подобное взаимодействует с подобным», т.е. должно быть сродство между адсорбентом и адсорбтивом; б) Выполняется правило Шилова:

Чем больше растворимость вещества в данном растворителе, тем хуже оно адсорбируется на поверхности твердого адсорбента.

в) правило Ребиндера (правило уравнивания полярностей Ребиндера):

На поверхности раздела фаз прежде всего адсорбируются те вещества, при адсорбции которых происходит выравнивание полярностей соприкасающихся фаз, причѐм с увеличением разности полярности фаз способность к адсорбции этих веществ возрастает

Эффективней всего адсорбируются молекулы веществ, имеющих дифильное строение. В этом случае идѐт эффективная адсорбция на твердом адсорбенте с самопроизвольной четкой ориентацией их молекул на границе раздела, выравнивающей полярности фаз. Полярный фрагмент молекулы обращен всегда к полярной фазе – к воде, силикагелю, а неполярный фрагмент – к неполярной (гидрофобной) фазе – активированному углю, маслу.

4.Влияние концентрации растворенного вещества на процесс адсорбции при постоянной Т описывается уравнением Ленгмюра.

5.Повышение температуры снижает эффективность адсорбции. Это объясняется ослаблением взаимодействия между адсорбентом и

адсорбатом.

Молекулярная адсорбция из растворов на твердом адсорбенте широко используется в медицинской практике. Активированный уголь хорошо адсорбирует газы, алкалоиды, барбитураты, токсины из пищеварительной системы. Одна таблетка активированного угля массой 0,25 г имеет адсорбционную поверхность около 100 м2.

АДСОРБЦИЯ РАСТВОРЁННОГО В ЖИДКОСТИ ВЕЩЕСТВА НА ТВЁРДОМ АДСОРБЕНТЕ

Различают молекулярную и ионную адсорбцию.

Молекулярная адсорбция – это адсорбция из растворов неэлектролитов (или очень слабых электролитов). При молекулярной адсорбции вещество адсорбируется на поверхности твѐрдого тела в виде молекул.

Особенности молекулярной адсорбции: наряду с растворѐнным веществом адсорбируются молекулы растворителя. Поэтому для адсорбции растворѐнного вещества его молекулы должны вытеснять с поверхности молекулы растворителя.

16

17

Экспериментально величину адсорбции «а» изучают измеряя молярную концентрацию раствора до контакта с адсорбентом (с0) и после наступления адсорбционного равновесия (сs):

a

c

cs

V

моль/г,

 

m

 

 

 

 

 

а – количество адсорбированного вещества, приходящееся на 1 г адсорбента; m – масса адсорбента, г: V – объѐм раствора, из которого идѐт адсорбция, л.

На молекулярную адсорбцию влияют:

равновесная концентрация растворѐнного вещества;

природа растворителя;

природа адсорбента;

природа растворѐнного вещества;

температура, время адсорбции.

Ионная адсорбция это адсорбция из растворов сильных электролитов; в этом случае адсорбируется растворѐнное вещество на поверхности твѐрдого адсорбента в виде ионов.

Ионная адсорбция – процесс более сложный, так как в растворе присутствуют уже частицы как минимум 3 видов: катионы, анионы растворѐнного вещества и молекулы растворителя.

Особенности ионной адсорбции:

1.Адсорбируются заряженные частицы (ионы), а не молекулы.

2.Адсорбция происходит только на полярных адсорбентах, поэтому еѐ часто называют полярной адсорбцией.

3.Адсорбция сопровождается образованием двойного электрического слоя (ДЭС).

4.Адсорбция является избирательной, т.е. на каждом данном адсорбенте катионы и анионы адсорбируются неодинаково.

5.В основе ионной адсорбции лежат химические силы, и она чаще всего

кинетически необратима.

6.Для ионной адсорбции характерно явление обменной адсорбции.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИОННУЮ АДСОРБЦИЮ

1.Химическая природа адсорбента

Чем более полярным является адсорбент, тем лучше он адсорбирует ионы из водных растворов. На активных центрах, несущих положительный заряд, адсорбируются анионы, на отрицательных - катионы.

17

18

2.Химическая природа ионов

а) На адсорбцию ионов большое влияние оказывает величина радиуса иона. Чем больше кристаллический радиус иона при одинаковом заряде, тем лучше он адсорбируется, так как с увеличением кристаллического радиуса иона возрастает его поляризуемость, а следовательно, способность притягиваться к полярной поверхности – адсорбироваться на

ней. Одновременно увеличение кристаллического радиуса приводит к уменьшению гидратации иона, а это облегчает адсорбцию. В соответствии с этим ионы можно расположить в ряды по возрастающей способности к адсорбции. Эти ряды называют лиотропными рядами или рядами Гофмейстера:

Li+ ‹ Na + ‹ K + ‹ Rb + ‹ Cs +

Mg 2+ ‹ Са 2+ ‹ Sr 2+ ‹ Ва 2+

Cl ‹ Br ‹ NO3 ‹ I ‹ NCS ‾

Адсорбционная способность возрастает

б) Чем больше заряд иона, тем сильнее ион притягивается противоположно заряженной поверхностью твердого тела, тем сильнее

адсорбция:

K + ‹‹ Са 2+ ‹‹ Al 3+

Усиление адсорбции

Особый интерес представляет адсорбция ионов поверхностью кристалла, в состав которого входят такие же ионы или родственные ионы. В этом случае адсорбцию можно рассматривать как

кристаллизацию, т.е. достройку кристаллической решетки способными адсорбироваться на ней ионами. Это позволило Панету и Фаянсу сформулировать следующее правило:

На кристаллической поверхности адсорбента адсорбируются те ионы, которые способны достраивать кристаллическую решетку и дают труднорастворимое соединение с ионами, входящими в состав кристалла.

Пример:

 

+ K+ + Cl-

 

Cl-

K+

nAgCl

nAgCl

Cl-

K+

 

 

 

 

 

 

[Панет Фридрих Адольф (1887 – 1958), немецкий химик. Первым исследовал абсолютный возраст метеоритов, один из авторов правила Фаянса-Панета.

Фаянс Казимир (1887-1975), американский физико-химик, иностранный член-корреспондент АН СССР с 1924 года, труды в области радиохимии. Установил вместе с Ф. Панетом праило Фаянса-Панета).]

18

19

ИОНООБМЕННАЯ АДСОРБЦИЯ

Ионообменная адсорбция – это процесс, при котором твѐрдый адсорбент обменивает свои ионы на ионы такого же знака заряда, находящиеся в растворе.

Для ионообменной адсорбции характерно следующее:

эта адсорбция специфична, т.е. к обмену способны только определѐнные ионы, по своей природе этот процесс приближается к химическим явлениям; ионообменная адсорбция не всегда обратима;

протекает медленнее, чем молекулярная адсорбция; при ионообменной адсорбции может меняться рН среды.

Вещества, проявляющие способность к ионному обмену при контакте с растворами электролитов, называются ионитами. Большинство ионитов – твѐрдые, нерастворимые, ограниченно набухающие вещества. Иониты состоят из каркаса, несущего положительный или отрицательный заряд, и подвижных противоионов, которые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоионы раствора электролита.

По знаку заряда обменивающихся ионов иониты делят на катиониты, аниониты и амфолиты.

По химической природе каркаса – на неорганические, органические и минерально-органические. Неорганические и органические иониты могут быть природными (целлюлоза, древесина, торф) и синтетическими (силикагель, Al2O3, наиболее важны ионообменные смолы). Минеральноорганические состоят из органического полиэлектролита на минеральном носителе.

Иониты применяются для очистки, разделения и концентрирования веществ из водных органических и газообразных сред. Например: очистка сточных вод, лекарственных веществ, сахара, выделение ценных металлов

ит. д.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

(по теме «Поверхностная энергия. Адсорбция»)

1.Какова причина возникновения избыточной поверхностной энергии?

2.Что называется поверхностным натяжением? От чего зависит величина поверхностного натяжения?

3.В чѐм заключаются причины самопроизвольных поверхностных явлений?

19

20

4.Какие поверхностные явления связаны с уменьшением величины межфазной поверхности?

5.Что называется адсорбцией? Чем она обусловлена?

6.Чем можно объяснить, что деревянную палочку диаметром 1 см сломать легко, а стальной стержень такого же диаметра – практически невозможно?

7.Какие вещества называются поверхностно-активными, поверхностно-инактивными?

8.В чѐм состоят особенности строения молекул ПАВ и ПИВ и их адсорбции?

9.Как зависит поверхностное натяжение от концентрации ПАВ в

растворе?

10.Уравнение Гиббса, его анализ. Ориентация молекул в поверхностном слое; структура липидного биослоя.

11.Чем отличается физическая адсорбция от хемосорбции?

12.Что называется поверхностной активностью? Как еѐ можно определить графически и аналитически?

13.В чѐм заключается правило Дюкло-Траубе?

14.Как графически можно определить предельную адсорбцию?

15.В чѐм состоят особенности газов и паров на твѐрдых поверхностях?

16.Какие участки есть на изотерме Ленгмюра? Какие математические уравнения характеризуют каждый участок?

17.Перечислите основные положения теории Ленгмюра.

18.Как с помощью теории Ленгмюра можно объяснить ступенчатую

адсорбцию?

19.От каких факторов зависит адсорбция на пористых адсорбентах? 20.Какие свойства газов влияют на их адсорбцию.

21. Что является причиной адсорбции растворѐнных веществ на поверхности твѐрдых тел?

22.Какая адсорбция является молекулярной, от каких факторов она зависит?

23.Как зависит молекулярная адсорбция от природы растворѐнного вещества, растворителя и адсорбента?

24.Перечислите особенности ионной адсорбции. Как она зависит от размеров и зарядов ионов?

25. Сформулируйте правило Панета –Фаянса.

26.В чѐм сущность ионообменной адсорбции? Какое состояние называется ионообменным равновесием? Какая величина его характеризует?

27.Какие поверхности называются гидрофильными, гидрофобными?

20