Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4 курс / Медицина катастроф / Meditsina_katastrof_2008.doc
Скачиваний:
2
Добавлен:
24.03.2024
Размер:
891.39 Кб
Скачать

Глава 5 медико-тактическая характеристика радиоактивного загрязнения при авариях на радиационно-опасных объектах

Проникающая радиация (ионизирующие излучения) представляет большую опас­ность для здоровья и жизни людей. В больших дозах она вызывает серьезные поражения тканей организма, а в малых - онкологические заболевания, провоци­рует генетические дефекты, которые могут проявляться не только у детей и внуков, но и у более отдаленных потомков человека, подвергшегося облучению.

В 1896 г. французский ученый А.Беккерель обнаружил, что в природе существует некоторое количество химических элемен­тов, ядра атомов которых самопроизвольно превращаются в ядра других элементов. Эти превращения сопровождаются из­лучением, которое назвали ионизирующим излучением, а само явление распада ядер - радиоактивностью. За единицу актив­ности радиоактивного вещества в Международной системе единиц (система СИ) принят беккерель (Бк). Один беккерель соответствует 1 распаду в секунду. Внесистемная единица - кюри (Ки). Один кюри соответствует 37 млрд. актов распада в секунду.

При более подробном исследовании ученые пришли к вы­воду, что радиоактивное излучение неоднородно, т.е. имеются частицы, заряженные отрицательно (бета-частицы), положи­тельно (альфа-частицы), и нейтральные, подобные рентгенов­ским лучам (гамма-лучи).

Ионизирующие излучения представляют собой потоки элементарных частиц и квантов электромагнитного излучения, способных вызывать ионизацию атомов и молекул среды, в которой они распространяются.

К ионизирующим излучениям относятся:

- альфа-излучение, состоящее из альфа-частиц (ядра гелия);

- бета - излучение, представляющее собой поток электронов или позитронов;

- гамма-излучение, фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающиеся от рентгеновских лучей.

Излучения разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью (ионизация - превращение атомов и молекул облучаемой среды в положительно и отрицательно заряженные частицы-ионы).

Так, альфа-излучения, представляющие собой тяжелые, имеющие заряд части­цы, обладают наибольшей ионизирующей способностью. Но их энергия вслед­ствие ионизации быстро уменьшается. Альфа-частицы не могут проникать ни через одежду чело­века, ни через кожный эпителий. Поэтому, если источник излучения альфа-частиц находится вне организма (внешнее облучение), они не представляют сколько-нибудь серьезной опасности для здоровья людей. Однако при попадании этого источника внутрь организма, например, с пищей или воздухом. альфа-частицы становятся опасными для человека (внутреннее облучение).

Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому ионизирующая их способность меньше, чем у альфа-излуче­ния. Потеря же энергии при этом происходит медленнее и проникающая способ­ность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма. Бета-частицы задерживаются одеждой, а при внешнем об­лучении открытого тела человека в зависимости от величины энергии излучения они могут задерживаться в кожном эпите­лии, вызывая его пигментацию ("ядерный загар"), ожоги кожи либо образуя язвы на теле. Особую опасность для здоровья представляют источники бета-излучения при внутреннем облучении.

Гамма-излучение обладает сравнительно небольшой ионизирующей актив­ностью, но в силу очень высокой проникающей способности представляет боль­шую опасность для человека. Гамма-излучение обладает высокой проникающей способ­ностью через вещества, в том числе и через ткани тела. Высо­кая проникающая способность гамма-излучения делает его одинаково опасным как при внутреннем, так и при внешнем облучении.

Нейтронное излучение имеет место только при искусствен­ном радиоактивном распаде. Нейтроны нейтральны, поэтому поток обладает высокой проникающей способностью, завися­щей от плотности облучаемого вещества и энергии нейтронов. Он опасен и при внешнем, и при внутреннем облучении.

Период полураспада. Важнейшей характеристикой любого радиоактивного вещества является период его полураспада - время, за которое число радиоактивных атомов вещества умень­шается в 2 раза (табл. 2).

Период полураспада обратно пропорционален активности.

Таблица 2.

Период полураспада некоторых радионуклидов

Радионуклид

Период полураспада

Радионуклид

Период полураспада

Уран-235

Уран-234 Стронций-90 Цезий-137 Полоний-210

700 млн. лет

245 тыс. лет

30-90 лет

30 лет

22,3 года

Йод-131

Цезий-134 Полоний-212 Радон-222

Уран - 238

8 суток

2 года

0,0000003 с

3,8 суток

4,5 млрд. лет

Энергия излучения. Поглощенная доза - это количество энергии ионизирующих излучений, поглощенное тканями, в пересчете на единицу массы. Поглощенная доза в системе СИ измеряется в греях (Гр), внесистемная - в радах (радиацион­ная адсорбированная доза). 1 Гр = 100 рад.

Но поглощенная доза не учитывает того, что при одинако­вой его величине биологический эффект от действия альфа-излучения будет больше, чем от гамма-излучения.

В этом случае используется эквивалентная доза, которая определяется путем умножения поглощенной дозы на коэф­фициент качества излучения.

Для рентгеновского, гамма - и бета-излучения коэффициент равен 1, а для альфа-излучения - 20.

В системе СИ эквивалентная доза измеряется в зивертах (Зв), внесистемная единица - бэр (биологический эквивалент рентгена). Малые дозы определяются в тысячных (мЗв, мбэр) и миллионных (мкЗв, мкбэр) долях.

Для оценки степени опасности пребывания на загрязненной радиоактивными веществами территории необходимо знать мощность дозы излучения.

Доза (любого вида излучения), отнесенная к единице вре­мени (секунда, час, год), называется мощностью дозы.

Единицами измерения являются Гр/с, Гр/ч; рад/с, рад/ч; Зв/с, Зв/ч; бэр/с, бэр/ч.

Уровень радиации (мощность дозы) 0,1-0,6 мкЗв/ч (10- 60 мкбэр/ч) принято считать нормальным, 0,6-1,2 мкЗв/ч (60- 120 мкбэр/ч) - аномальным, свыше 1,2 мкЗв/ч (120 мкбэр/ч) - радиоактивным загрязнением.

В зависимости от складывающейся радиационной обстановки проводятся сле­дующие мероприятия по защите населения от возможных последствий аварии на РОО (радиационно-опасном объекте):

- ограничение пребывания населения на открытой местности путем временного укрытия в убежищах и домах с герметизацией жилых и служебных помещений (отключение вентиляции, не имеющей фильтров, плотное закрывание окон, две­рей, вентиляционных отверстий и дымоходов), на время рассеивания радиоактивных веществ в воздухе;

- предупреждение накопления радиоактивного йода в щитовидной железе (йодная профилактика) приемом внутрь лекарственных препаратов стабильного йода (йодистый калий, 5% йодная настойка). При этом необходимо помнить, что наибольший (100-90%-ый) защитный эффект достигается тогда, когда эти профилактические средства применяются заблаговременно или одновременно с ингаляционным поступлением радиоактивного йода в организм;

- эвакуация населения в безопасные в радиационном отношении районы, осуществляемая при высоких мощностях доз излучения, требующих соблюдения режима радиационной защиты в течение длительного времени, а также тогда, когда используемые противорадиационные укрытия не обладают достаточно надежными защитными свойствами;

- исключение или ограничение потребления загрязненных пищевых продуктов;

- санитарная обработка при обнаружении или предположении загрязнения кожи, с последующим радиометрическим контролем. При необходимости обработ­ку повторяют до прекращения снижения загрязнения;

- простейшая обработка поверхностно загрязненных продуктов питания (обмывание, удаление поверхностного слоя);

- защита органов дыхания подручными средствами (носовые платки, полотен­ца, ватно-марлевые повязки), лучше увлажненными;

- перевод сельскохозяйственных животных на незагрязненные пастбища или фуражные корма;

- дезактивация загрязненной местности;

- соблюдение населением правил личной гигиены: максимально ограничить время пребывания на открытой местности; тщательно мыть обувь и вытряхивать одежду перед входом в помещения; не пить воду из открытых водоисточников и не купаться в них; не принимать пищу и не курить, не собирать фрукты, ягоды, грибы на загрязненной территории и др.

Необходимость проведения перечисленных мероприятий определяется в каж­дом конкретном случае на основании анализа характеризующих аварию данных, оперативной оценки возможных радиационных последствий аварийного выброса и результатов радиационной разведки в районе радиоактивного загрязнения.

Своевременное проведение мероприятий по противорадиационной защите на­селения при авариях на радиационно-опасных объектах может свести к минимуму, как индивидуальную дозу облучения, так и количество облучаемых лиц. В тех случаях, когда в силу каких-либо обстоятельств защитные мероприятия выполня­ются не в полном объеме, потери среди населения будут определяться:

- величиной, продолжительностью и изотопным составом аварийного выброса продуктов ядерного деления;

- метеорологическими условиями (скорость и направление ветра, осадки и др.) в момент аварии и в ходе формирования радиоактивного следа на местности;

- расстоянием от аварийного объекта до мест проживания населения;

- плотностью населения в зонах радиоактивного загрязнения;

- защитными свойствами зданий, сооружений, жилых домов и иных мест укрытия людей и др.

Ранние эффекты облучения - острая лучевая болезнь, локальные (местные) лучевые поражения (лучевые ожоги кожи и слизистых оболочек, возникающие вследствие отложения на них радиоактивных веществ), наиболее вероятны у людей, находящихся вблизи аварийного объекта. Особенно велика опасность ос­трых радиационных поражений у персонала РОО, а также личного состава аварий­но-спасательных формирований, работающего непосредственно у аварийной уста­новки.

Повышенная опасность для указанных контингентов обусловлена большой мощностью дозы гамма-нейтронного излучения, сопровождающего цепную реак­цию деления в аварийном реакторе и бета-, гамма-излучения продуктов ядерного деления.

Не исключается возможность комбинированного поражения людей вблизи места аварии вследствие сопутствующих аварии пожаров и (или) взрывов. При этом острые радиационные поражения могут сочетаться с ожогами и (или) механи­ческими травмами.

Острые радиационные поражения среди населения, пребывающего в условиях радиоактивного загрязнения местности вблизи аварийного объекта, возможны, начиная с внешней границы зоны опасного загрязнения (зона «Б»).

Острое или хроническое облучение населения в малых дозах (менее 0,5 Зв) может привести к отдаленным эффектам облучения. К ним относятся: катаракта, преждевременное старение, злокачественные опухоли, генетические дефекты - врожденные уродства и нарушения у потомков облученных лиц.

Вероятность возникновения онкологических и генетических последствий су­ществует при сколь угодно малых дозах облучения. Эти эффекты называются стохастическими (вероятностные, случайностные). Тяжесть стохастических эффек­тов не зависит от дозы. С ростом дозы увеличивается лишь вероятность их возникновения.

Вредные эффекты, для которых существует пороговая доза, и степень тяжести возрастают с ее увеличением, называются нестохастическими (лучевая катаракта, нарушение воспроизводительной функции и др.).

Особое положение занимают последствия облучения плода -эмбриотоксические эффекты. Плод является весьма чувствительным к облучению, особенно на 4-12 неделях беременности.