Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭПР цели.docx
Скачиваний:
243
Добавлен:
15.03.2015
Размер:
232.36 Кб
Скачать

Курсовой проект

СПбГУТ им. Бонч-Бруевича

Кафедра Радиосистем и обработки сигналов

Курсовой проект по дисциплине

«Радиотехнические системы», на тему:

«Эффективная площадь рассеяния»

Выполнил:

Студент группы РТ-91

Кротов Р.Е.

Принял: профессор кафедры РОС Гуревич В.Э.

Задание выдано: 30.10.13

Срок защиты: 11.12.13

Содержание проекта:

  1. Введение и т.з.

  2. Структурная схема РЛС

  3. Принципиальная схема РЛС

  4. Теория работы устройства

  5. Заключение

  6. Список используемой литературы

Эффективная площадь рассеяния

Эффективная площадь рассеяния (ЭПР; англ. Radar Cross-Section, RCS; в некоторых источниках — эффективная поверхность рассеянияэффективный поперечник рассеяния,эффективная отражающая площадь, ЭОП) в радиолокации — площадь некоторой фиктивной плоской поверхности, расположенной нормально к направлению падающей плоской волны и являющейся идеальным и изотропным переизлучателем, которая, будучи помещена в точку расположения цели, создаёт у антенны радиолокационной станции ту же плотность потока мощности, что и реальная цель.

Пример диаграммы моностатической ЭПР (B-26 Инвэйдер)

ЭПР является количественной мерой свойства объекта рассеивать электромагнитную волну. Наряду с энергетическим потенциалом приемопередающего тракта и КУ антенн РЛС, ЭПР объекта входит в уравнение дальности радиолокации иопределяет дальность, на которой объект может быть обнаружен радиолокатором. Повышенное значение ЭПР означает бо́льшую радиолокационную заметность объекта, снижение ЭПР затрудняет обнаружение (стелс-технология) .

ЭПР конкретного объекта зависит от его формы, размеров, материала, из которого он изготовлен, от его ориентации (ракурса) по отношению к антеннам передающей и приемной позиций РЛС (в том числе, и от поляризации электромагнитных волн), от длины волны зондирующего радиосигнала. ЭПР определяется в условиях дальней зоны рассеивателя, приемной и передающей антеннрадиолокатора.

Поскольку ЭПР — формально введенный параметр, то ее значение не совпадает ни со значением полной площади поверхности рассеивателя, ни со значением площади его поперечного сечения (англ. Cross-Section). Расчет ЭПР — одна из задач прикладной электродинамики, которая решается с той или иной степенью приближения аналитически (только для ограниченного ассортимента тел простой формы, например, проводящей сферы, цилиндра, тонкой прямоугольной пластины и т. п.) или численными методами. Измерение (контроль) ЭПР проводится на полигонах и в радиочастотных безэховых камерах с использованием реальных объектов и их масштабных моделей.

ЭПР имеет размерность площади и обычно указывается в кв.м. или дБкв.м.. Для объектов простой формы — тестовых — ЭПР принято нормировать к квадрату длины волны зондирующего радиосигнала. ЭПР протяженных цилиндрических объектов нормируют к их длине (погонная ЭПР, ЭПР на единицу длины). ЭПР распределенных в объеме объектов (например, дождевого облака) нормируют к объему элемента разрешения РЛС (ЭПР/куб. м.). ЭПР поверхностных целей (как правило, участка земной поверхности) нормируют к площади элемента разрешения РЛС (ЭПР/кв. м.). Иными словами, ЭПР распределенных объектов зависит от линейных размеров конкретного элемента разрешения конкретной РЛС, которые зависят от расстояния РЛС — объект.

ЭПР можно определить следующим образом (определение эквивалентно приведенному в начале статьи):

Эффективная площадь рассеяния (для гармонического зондирующего радиосигнала) — отношение мощности радиоизлучения эквивалентного изотропного источника (создающего в точке наблюдения такую же плотность потока мощности радиоизлучения, что и облучаемый рассеиватель) к плотности потока мощности (Вт/кв.м.) зондирующего радиоизлучения в точке расположения рассеивателя.

ЭПР зависит от направления от рассеивателя на источник зондирующего радиосигнала и направления в точку наблюдения. Поскольку эти направления могут не совпадать (в общем случае источник зондирующего сигнала и точка регистрации рассеянного поля разнесены в пространстве), то определенная таким образом ЭПР называется бистатической ЭПР (двухпозиционной ЭПР, англ. bistatic RCS).

Диаграмма обратного рассеяния (ДОР, моностатическая ЭПРоднопозиционная ЭПР, англ.monostatic RCSback-scattering RCS) — значение ЭПР при совпадении направлений от рассеивателя на источник зондирующего сигнала и на точку наблюдения. Под ЭПР часто подразумевают ее частный случай — моностатическую ЭПР, то есть ДОР (смешивают понятия ЭПР и ДОР) из-за малой распространенности бистатических (многопозиционных) РЛС (по сравнению традиционными моностатическими РЛС, оснащенными единой приемо-передающей антенной). Тем не менее, следует различать ЭПР(θ, φ; θ0, φ0) и ДОР(θ, φ) = ЭПР(θ, φ; θ0=θ, φ0=φ), где θ, φ — направление на точку регистрации рассеянного поля; θ0, φ0 — направление на источник зондирующей волны (θ, φ, θ0, φ0 — углы сферической системы координат, начало которой совмещено с рассеивателем).

В общем случае для зондирующей электромагнитной волны с негармонической временной зависимостью (широкополосный в пространственно-временно́м смысле зондирующий сигнал)эффективная площадь рассеяния — отношение энергии эквивалентного изотропного источника к плотности потока энергии (Дж/кв.м.) зондирующего радиоизлучения в точке расположения рассеивателя.

Расчёт эпр

Рассмотрим отражение волны, падающей на изотропно отражающую поверхность, площадью равной ЭПР. Отражённая от такой цели мощность — это произведение ЭПР на плотность падающего потока мощности:

,

(1)

где  — ЭПР цели,  — плотность потока мощности падающей волны данной поляризации в точке расположения цели,  — мощность, отражённая целью.

С другой стороны, излучённая изотропно мощность

,

(2)

где R — расстояние от РЛС до цели,  — плотность потока мощности отражённой от цели волны данной поляризации в точке расположения РЛС.

Подставляя выражение (2) в (1), получаем выражение для ЭПР цели:

.

(3)

Или, используя напряженности поля падающей волны  и отраженной волны :

.

(4)

Мощность на входе приёмника:

,

(5)

где  — Эффективная площадь антенны.

Можно определить поток мощности падающей волны через излучённую мощность  и Коэффициент направленного действия антенны D для данного направления излучения.

.

(6)

Подставляя (6) и (2) в (5), для мощности на входе приёмника РЛС имеем:

.

(7)

Или

,

(8)

Где  .

Таким образом,

. (9)

Физический смысл эпр

ЭПР имеет размерность площади [м²], но не является геометрической площадью(!), а является энергетической характеристикой, то есть определяет величину мощности принимаемого сигнала.

(10)

Аналитически ЭПР можно рассчитать только для простых целей. Для сложных целей ЭПР измеряется практически на специализированных полигонах, или в безэховых камерах.

ЭПР цели не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью. Любое увеличение  ведёт к пропорциональному увеличению  и их отношение в формуле не изменяется. При изменении расстояния между РЛС и целью отношение  меняется обратно пропорционально  и величина ЭПР при этом остается неизменной.

Эпр распространённых точечных целей

  • Выпуклой поверхности

Поле от всей поверхности S определяется интегралом  Необходимо определить E2 и отношение  при заданном расстоянии до цели…

,

(10)

где k — волновое число.

1) Если объект небольших размеров, то  — расстояние и поле падающей волны можно считать неизменными.

2) Расстояние R можно рассматривать как сумму расстояния до цели и расстояния в пределах цели:

  •  — расстояние от РЛС до объекта

  •  — местное расстояние

Тогда:

,

(11)

,

(12)

,

(13)

,

(14)

  • Плоской пластины

Плоская поверхность — частный случай криволинейной выпуклой поверхности.

(15)

Если плоскость с площадью 1 м², а длина волны 10 см (3 ГГц), то

  • Шара

Для шара 1-ой зоной Френеля будет зона, ограниченная экватором.

(16)

Уголкового отражателя

Уголковый отражатель — устройство в виде прямоугольного тетраэдра со взаимно перпендикулярными отражающими плоскостями. Излучение, попавшее в уголковый отражатель, отражается в строго обратном направлении.

  • Треугольный

Если используется уголковый отражатель с треугольными гранями, то ЭПР

,

(17)

где a — размер ребра.

  • Четырёхугольный

Если уголковый отражатель составлен из граней четырёхугольной формы, то ЭПР

,

(18)

Дипольного отражателя

Дипольные отражатели используются для создания пассивных помех работе РЛС.

Величина ЭПР дипольного отражателя зависит в общем случае от ракурса наблюдения, однако, ЭПР по всем ракурсам:

Дипольные отражатели используются для маскировки воздушных целей и рельефа местности, а также как пассивные радиолокационные маяки.

Сектор отражения дипольного отражателя составляет ~70°