Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТОПТ лекции.doc
Скачиваний:
98
Добавлен:
13.03.2015
Размер:
567.3 Кб
Скачать

Лекция 2. Химическая энергетика. Тепловые эффекты химических реакций.

Технико-экономический уровень химического производства определяется совокупностью технико-экономических показателей, среди них особенно важны такие как выход готового продукта и степень превращения сырья, селективность и скорость химического процесса, протекающего в реакторе.

Под химическим процессом в реакторе понимают химическую реакцию и сопутствующие ей явления массо- и теплопереноса. В химическом реакторе можно условно выделить три зоны: зону подвода реагирующих веществ в зону химических реакций, зону химических реакций и зону отвода продуктов из зоны химических реакций. В первой и третьей зонах реактора протекают физические процессы подвода и отвода веществ, подчиняющиеся общим законам массопередачи. Во второй зоне химического реактора протекает ряд химических реакций, каждая из которых характеризуется скоростью (кинетический фактор) и состоянием равновесия в системе (термодинамический фактор). Следовательно, для оценки протекающих в этой зоне явлений необходимо исследовать влияние различных факторов на скорость химической реакции и полноту протекания ее, т. е. состояние равновесия в системе.

Основные технологические показатели 1 и 3 третьей зоны химико-технологического процесса. Выход готового продукта определяется как отношение массы полученного продукта к массе сырья, затраченного на его производство. Для одностадийного процесса, протекающего по схеме АВ выход равен (1)

Если в основе процесса лежит химическая реакция, описываемая конкретным уравнением, то для необратимых реакций выход определяется как отношение массы, полученной на практике mВ(пр) к массе, теоретически возможной по стехиометрическому уравнению mВ(теор).

(2)

Выход для обратимой реакции определяется как отношение практически полученной массы продукта к максимально возможной массе его, которая может быть получена в данных условиях производства.

Степенью превращения сырья называется отношение массы сырья, вступившего в химическое превращение за время , к исходной массе его (mао).

(3)

где ma - количество сырья, не вступившего в реакцию превращения за время .

Выход продукта и степень превращения выражаются в долях единицы или процентах. Для оценки состояния равновесия в реакторе обычно используют равновесную степень превращения (равновесный выход продукта), который определяется из равновесного закона действующих масс.

Одной из важнейших характеристик всякого технологического процесса является его энергетика. Основным признаком любой химической реакции является выделение или поглощение теплоты, происходящее при химических превращениях одних веществ в другие. Реакции, протекающие с выделением теплоты, носят название экзотермических реакций, а сопровождающиеся поглощением теплоты - эндотермических. К первым относятся, как правило, все реакции соединения, а типичными реакциями второго типа являются реакции разложения.

Количество теплоты, выделяющейся или поглощающейся при химической реакции, называют тепловым эффектом реакции. Обычно его выражают в килоджоулях (кДж).

Строго говоря, теплота, выделяемая или поглощаемая в результате химического превращения, является своеобразным «участником» химической реакции. Поэтому для соблюдения закона сохранения и превращения энергии количество теплоты, сопровождающее химическую реакцию, должно быть включено в ее уравнение. Уравнения химических реакций, в которых приводятся значения тепловых эффектов, называют термохимическими.

Знак «+» перед значением теплового эффекта в правой части уравнения означает, что теплота выделяется, в то время как для эндотермических реакций тепловой эффект должен быть взят со знаком «-», если он указан в правой части уравнения.

Следует отметить, что значение теплового эффекта в термохимическом уравнении строго соответствует количествам реагентов и продуктов, определяемым стехиометрическими коэффициентами. Наиболее часто встречающейся формой записи термохимических уравнений является такая, согласно которой образуется один моль продукта реакции. Например, тепловой эффект реакции взаимодействия водорода с кислородом

Н2 + 1/2О2 = Н2О(г) + 242 кДж

должен быть удвоен для реакции, в которой используются удвоенные коэффициенты:

2 + О2 = 2Н2О(г) + 484 кДж

В чем же причина поглощения или выделения теплоты при химических превращениях? Каждое тело обладает определенным запасом внутренней энергии. Внутренняя энергия включает все виды энергии, характеризующие тело: энергию движения молекул относительно друг друга, энергию движения электронов и атомов в молекуле и т. д. Запас внутренней энергии каждого тела зависит от природы тела, его массы и от условий, в которых оно находится.

Суммарная внутренняя энергия продуктов реакции в общем случае отличается от суммарной внутренней энергии реагентов, так как в процессе реакции происходит изменение молекулярного состава вещества, а, следовательно, и изменение межатомных расстояний в продуктах реакции по сравнению с исходными реагентами. Одновременно происходит и перестройка электронных оболочек атомов взаимодействующих молекул. Эта суммарная разница как раз и соответствует тепловому эффекту реакции. Очевидно, что он, подобно внутренней энергии, должен зависеть от условий, в которых находятся реагенты и продукты.

Чтобы иметь возможность сравнивать различные химические реакции и производить термохимические расчеты, необходимо относить значения тепловых эффектов к одному и тому же состоянию исходных продуктов и реагентов. В качестве такого состояния, называемого стандартным, обычно выбирают температуру 298К (25°С) и давление 105Па (а также концентрацию 1 моль/л для растворов).

Термохимические законы. Рассмотрим основные законы термохимии, которые являются частными проявлениями закона сохранения и превращения энергии. Первый закон термохимии обычно формулируют следующим образом: Тепловой эффект прямой реакции равен по абсолютному значению и противоположен по знаку тепловому эффекту обратной реакции. Иначе говоря, осуществив в системе какой-либо химический процесс, а затем ему противоположный, мы возвращаем систему в первоначальное состояние с той же внутренней энергией, какую она имела.

При термохимических расчетах особенно важным является один из видов тепловых эффектов - теплота образования.

Теплотой образования называют тепловой эффект реакции образования одного моля химического соединения из простых веществ, устойчивых при данных условиях.

Например, теплота образования силиката кальция есть тепловой эффект реакции, равный 1635 кДж на 1 моль продукта:

Са + Si + 3/2О2 = СаSiO3 + 1635 кДж/моль

Будем в дальнейшем тепловой эффект реакции образования при стандартных условиях обозначать символом Q298

Однако нужно понимать, что в термохимии и термодинамике приняты разные исходные положения для учета изменения энергии при химических реакциях. Термохимия, как было указано ранее, рассматривает, сколько энергии приобрела (или отдала) окружающая среда, в которой происходит химическая реакция. Термодинамика, напротив, учитывает изменения энергии, происходящие в самой реакции, т.е. при переходе исходных реагентов в продукты реакции. При этом в термодинамике тепловой эффект реакции образования, проводимой при постоянном давлении, обозначают символом Н298 (энтальпия), который численно равен, но противоположен по знаку величине Q298. Следовательно, эндотермическим процессам (-Q298) соответствуют положительные значения Н298, а экзотермическим (+Q298) - отрицательные, т.е. - Н298. Например, эндотермическая реакция паров воды с углем с учетом теплового эффекта может быть выражена двумя способами:

Н2О(г) + Ств = СО(г) + Н2(г) - 132 кДж/моль

Н2О(г) + Ств = СО(г) + Н2(г) (Н =132кДж/моль)

Оба способа записи термохимического уравнения химической реакции эквивалентны и показывают, что при взаимодействии паров воды с углем происходит поглощение теплоты.

Второй термохимический закон, открытый в 1840 г. известным русским химиком Гессом, является важнейшим и формулируется следующим образом: тепловой эффект химической реакции не зависит от пути ее протекания и определяется только начальным и конечным состоянием системы.

Например, силикат кальция можно получить двумя путями:

1) из простых веществ, сжигая эквимолярные количества кальция и кремния совместно в кислороде:

Са + Si + 3/2О2 = СаSiO3 (Н1)

2) из простых веществ, предварительно превращенных в оксиды:

Са + 1/2О2 = СаО (Н2)

Si + O2 = SiO2 (Н3)

с последующим взаимодействием оксидов:

СаО + SiO2 = СаSiO3 (Н4)

В соответствии с законом Гесса получается:

Н1 = Н2 + Н3 + Н4

Закон Гесса часто используют для определения тепловых эффектов, которые трудно или невозможно измерить непосредственно.

Важным следствием закона Гесса является правило, согласно которому тепловой эффект реакции равен разности суммы теплот образования продуктов реакции и суммы теплот образования исходных веществ.

Нx.p. = Нобр (продуктов) - Нобр (реагентов) (4)

Суммирование следует производить с учетом количества вещества, участвующего в реакции, т.е. с учетом стехиометрических коэффициентов в уравнении, например:

2О3 + 3СО = 2Fе + 3СО2 (Н)

Н = 3НCO2 – НFe2O3 – 3НCO

Теплота образования всех простых веществ принята равной нулю.

Знание теплот образования веществ и тепловых эффектов реакций позволяет делать приближенные, но очень важные выводы.

Во-первых, чем больше по абсолютному значению экзотермический эффект образования соединения, тем оно термически устойчивее.

Во-вторых, эндотермические и слабоэкзотермические соединения являются, как правило, химически малоустойчивыми и обладают более высокой реакционной способностью, чем сильно экзотермические вещества.

Наконец, необходимо подчеркнуть, что значения тепловых эффектов реакций образования химических соединений, как и другие их свойства, находятся в периодической зависимости от атомных номеров элементов, образующих эти химические соединения.

Направление протекания химических реакций. Из анализа энергетики химических взаимодействий непосредственно следует еще более важный вывод о принципиальной возможности прогнозирования многих химических реакций. Свыше 100 лет назад основой для таких прогнозов служил принцип Бертло-Томсена, согласно которому химический процесс осуществляется лишь в том случае, если он сопровождается выделением теплоты, т.е. является экзотермическим. Однако на практике оказалось, что многие эндотермические реакции довольно легко осуществляются при повышенных температурах.

Теперь известно, что, помимо стремления к минимуму энергии, в физико-химических системах существует еще одна тенденция - стремление к увеличению беспорядка.

Стремление к переходу в наиболее вероятное состояние характерно для всех систем. Количественной мерой беспорядка системы (неупорядоченности состояния системы) является величина S, называемая энтропией. Таким образом, с учетом вышесказанного энтропия увеличивается при расширении, плавлении веществ и т.д. Кроме того, энтропия возрастает при переходе вещества из кристаллического состояния в газообразное (Sг>>Sж>Sтв). Величина энтропии, аналогично энтальпии, не зависит от пути протекания реакции и определяется только начальным и конечным состоянием системы, т.е. является функцией состояния системы. Более того, для расчета изменения энтропии при химической реакции также применимы соотношения, аналогичные законам Гесса и следствиям из них:

Sx.p. = Sобр (продуктов) - Sобр (реагентов) (5)

Важной характеристикой состояния системы является общая энергия системы, называемая энергией Гиббса (свободной энергией системы) и определяемая соотношением:

G = H – TS (6)

Являясь функцией состояния системы, также как энтальпия и энтропия, энергия Гиббса при протекании химической реакции определяется следующим образом:

Gx.p. = Нx.p. – ТSx.p. = Gобр (продуктов) - Gобр (реагентов) (7)

Важным свойством энергии Гиббса является ее способность определять направление протекания химического процесса.

Если изменение энергии Гиббса химической реакции меньше нуля (G<0), то при отсутствии внешних воздействий в нормальных условиях процесс протекает в сторону образования продуктов реакции.

Если же это изменение является положительной величиной (G>0), то процесс может протекать в сторону образования исходных веществ.

Из условия G=0 (состояние равновесия) можно рассчитать равновесные количества веществ, находящихся в равновесном состоянии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]