Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МиПКОС.doc
Скачиваний:
69
Добавлен:
12.03.2015
Размер:
432.64 Кб
Скачать

Особенности очистки сточных вод от катионов меди

  Произведение растворимости гидроокиси меди равно 5,0 * 10-20, в то время, когда растворимость основного карбоната меди практически равна нулю. Поэтому медь выгодно осаждать в виде основного карбоната: для этого в растворе нейтрализующего реагента необходимо иметь одновременно как гидроксильные ионы (ОН)-, так и карбонатные (СО32-). Таким образом, для осаждения из растворов ионов меди нерационально применение только едких щелочей и извести высшего сорта, так же только соды, мела, мрамора, доломита и известняка, дающих в раствор в основном карбонат – ионы.

В связи с изложенным, лучшим реагентом для очистки сточных вод от катионов меди является недожженная известь III-его сорта, содержащая СаСО3.

В последнее время находит практическое применение ферритный метод (метод ферритизаиии) как модификация реагентного метода очистки сточных вод от ионов тяжелых металлов с помощью железосодержащих реагентов.

Железо, будучи элементом побочной подгруппы VIII группы, проявляет значительную химическую активность, обладает высокой приверженностью к аллотропическим модификациям и пространственно-фазовым превращениям. Железо образует множество соединений как стехиометрического состава, так и бертоллидного характера. Последние играют важную роль при проявлении железосодержащими реагентами коагулирующего и адсорбционного действия.

Очистка сточных вод методом ферритизации заключается в сорбции примесей (в т.ч. ионов тяжелых металлов) магнитными гидроокисями железа, образовании ферритов с последующей топохимической реакцией захвата сорбированных веществ кристаллической решеткой феррита. Ферриты - это производные гипотетической железистой кислоты, в которой ионы водорода замещены ионами металлов.

Основным реагентом ферритизационной обработки сточных вод служит гидрат сернокислого закисного железа FeS04*7H20, являющийся отходом производства двуокиси титана или травления стали.

При добавлении щелочи к водному раствору железного купороса, начиная с pH 7,7, образуется хлопьевидный желтовато-­белый осадок. Под воздействием воздуха он приобретает коричневатый оттенок, обусловленный возникновением аддукта Fe(0H)2-Fe(0H)3. Последний чрезвычайно активен, может превращаться в зависимости от состава раствора, pH и температуры в различные соединения – ферриты.

Эти соединения, формируясь индивидуально и в смеси, отражают многообразие, сложность реакций, лежащих в основе их образования. При низких концентрациях железа в широком диапазоне pH организуются соединения с выраженными магнитными свойствами. С увеличением концентрации железа возрастают требования к pH, при котором оптимально проходят процессы ферритообразования: возникновения зародышей магнетита - феррита железа FeII(FeIII02)2 по реакции:

Fe(OH)y + 2Fe(OH)4- = Fe304 + 4ШО + 3ОН-,

или в общем виде:

FeS04 + 12NaOH + О2 = 2Fe304 + 6Н2О + 6Na2S04,

Образование ферритов - сложный процесс, включающий реакции твердофазного координирования и кристаллографического структурирования.

Возникающие при этом твердые комплексные соединения имеют туннельную структуру, благоприятствующую дополнительному клатратированию тяжелых металлов.

Повышение температуры нивелирует влияние pH, в результате при температуре 80 “С область ферритообразования в районе повышенных концентраций железа (а также ионов тяжелых металлов) значительно расширяется. Необходимо отметить, что наблюдаемое расширение более заметно при пониженной pH, когда возрастает роль твердофазных превращений.

Способность металлов к совместному осаждению с гидрозакисью железа и ферритообразованию усиливается в ряду Cd < Zn < Со < Ni < Си. Каямий и цинк проявляют малую активность в формировании ферромагнитных композиций, поэтому они менее всего клатратируются при ферритном обезвреживании сточных вод. Степень очистки с образованием магнитных продуктов повышается при обработке стоков, содержащих одновременно ионы нескольких металлов по сравнению с обработкой индивидуальных стоков, а также при повышении pH.

Наивысшую активность в ферритной очистке проявляет медь. При рН>9 она эффективно удаляется в виде кристаллического продукта с высокой магнитной восприимчивостью.

Никель и кобальт по способности к ферритной очистке занимают промежуточное положение между медью и цинком. Высокий эффект очистки достигается при рН>10, а ферромагнитный характер формируемых осадков обеспечивается лишь при дозировке железа в очищаемую воду в количестве до 1 г/л.

Очистку сточных вод от ионов тяжелых металлов методом ферритизации можно проводить двумя способами.

Первый способ заключается в добавлении в сборник со сточными водами железного купороса, едкого натра (в виде 40 % водного раствора) и азотнокислого натрия: при суммарной концентрации ионов тяжелых металлов 30 мг/л в стоки дозируются 450 г/м3 железного купороса (90 г-ион/м3 в пересчете на железо), 322 г/м3 раствора каустика и 45,6 г/м3 нитрата натрия. После этого сточная вода нагревается острым паром до 60 °С (100 кг пара на 1 м3 стоков) и выдерживается при барботировании воздухом в течение 1 часа (расход воздуха 100 м33 стоков в час). Затем стоки сбрасываются в отстойник. Время выдержки в отстойнике 15-20 мин. После чего осветленная часть стоков направляется на фильтрацию и далее в хозяйственно-бытовую канализацию.

По второму способу очистка стоков проводится в две стадии. На первой стадии формируется железосодержащая суспензия таким образом, чтобы она обладала развитой поверхностью, высокой химической активностью и адсорбционной способностью. На приготовление 1 м3 железосодержащей суспензии необходимо 208,5 кг железного купороса, 60 кг едкого натра и 21,3 кг азотнокислого натрия. Время выдержки составляет 20 минут. Чем дольше суспензия выдерживается до прибавления её в очищаемые стоки, тем завершеннее, полнее реализуется способность её к ферритообразованию. На второй стадии сформированная суспензия дозируется в очищаемые сточные воды.

Специфику ферритизационной обработки иногда связывают с адсорбционными явлениями, обусловленными дефектами кристаллической решетки ферритов. Для полноты реализации адсорбционных явлений осуществляют предварительный специальный синтез активированных ферритов, предусматривающий обработку нитритами гидроокисей двух- и трехвалентного железа, взятых в определенном соотношении. Полученные таким образом ферриты хорошо сорбируют ионы хрома, кадмия, свинца, меди, никеля, кобальта, ртути, марганца и бериллия, они имеют емкость по тяжелым металлам в 1000 - 10000 раз большую, чем магнетит.

При ферритной обработке сточных вод, особенно первым способом, происходящие процессы гидратообразования железа способствуют коагуляционной очистке тонкодиспергированных взвесей и эмульгированных загрязнений за счет формирования железосодержащих мицелл, способных к некоторым реакциям включения.

Главными преимуществами ферритной очистки стоков являются: возможность одновременного удаления различных ионов тяжелых металлов в одну стадию; ионы тяжелых металлов клатратируются в виде кристаллических не выщелачиваемых продуктов; наряду с растворенными тяжелыми металлами эффективно удаляются диспергированные взвеси и эмульгированные загрязнения; процесс не чувствителен к влиянию других солей, которые могут присутствовать в стоках в больших концентрациях.

Аппаратурное оформление ферритной очистки отличается простотой, в основе его лежит принцип магнитного осаждения продуктов клатратирования загрязнений (для ионов тяжелых металлов). Главным рабочим узлом установки ферритной очистки является резервуар-накопитель, снабженный мешалкой и магнитными клапанами для спуска обработанной воды.

Выводы

  1. Методы изготовления многослойных печатных плат (МПП) постоянно эволюционируют, при этом наблюдается совершенствование технологий и возврат к старому в новом качестве.

  2. Электрохимический способ получения печатных плат осуществляется посредством следующих основных операций: резки заготовок, сверления отверстий, подлежащих металлизации; подготовки поверхности; химического меднения; усиления меди гальваническим меднением; нанесения защитного рельефа на пробельные места; гальванического меднения; гальванического покрытия сплавом олово—свинец; удаления защитного рельефа; травления меди с пробельных мест

  3. В настоящее вpемя для очистки сточных вод гальванических производств используют pазличные методы: pеагентный, ионобменный, электрохимические и другие. Наиболее рациональным методом является реагентный. Достоинства метода - широкий интервал концентраций тяжелых металлов, нет необходимости разделения промывных вод и концентратов, метод прост, дешев, универсален.