Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kursovoy.doc
Скачиваний:
13
Добавлен:
12.03.2015
Размер:
934.91 Кб
Скачать

Исследование шарнирно – рычажного механизма

Для выполнения данного раздела проекта необходимо ознакомиться с литературой [1-3]. Исходные данные для проектирования приведены в прил. 1, 2 и 3 настоящего руководства.

Порядок выполнения задания

1. Построить в тонких линиях схему механизма (рис. 1) в 12 положениях в заданном масштабе КL, м/мм. Для всех вариантов задания КL = 0,005 м/мм. Два заданных положения обвести (положения указаны в прил. 1).

2. Построить траекторию движения центров масс шатунов.

3. Для двух заданных положений определить скорости точек, указанных на механизме. Масштаб скорости КV м/с·мм выбирать при условии, что скорость VА точки А ведущего звена на плане скоростей пропорциональна отрезку оа = 70 мм.

4. Для двух заданных положений найти ускорения точки. Масштаб ускорения определить по формуле м/ смм, либо задается самим.

5. Рассчитать угловые скорости и угловые ускорения звеньев для заданных положений, показать их направления на схеме механизма.

6. Для одного из заданных положений найти радиусы кривизны траектории движения центров масс шатунов и показать их на схеме механизма.

7. Для одного из заданных положений определить силы, приложенные к звеньям, найти момент сопротивления, приложенный к ведущему звену. При этом величина силы Р = , где R – равнодействующая звена, к которому она приложена.

  1. Построение схемы механизма

Длины звеньев механизма (рис. 1) lOA, lAB, lBC, lEF, lEC и расстояния Х1, У1 заданы в метрах. Положения центров масс S2, S3, S4 и точки D известны. Размеры звеньев механизма определяем в заданном масштабе КL в миллиметрах:

ОА = , АВ = , ….., х1 = , у1 = .

Схему механизма строим методом засечек. После построения механизма в 12 положениях обводим два заданных положения (на рис. 1 обведены 5 и 10 положения).

  1. Построение траектории центров масс

На всех 12 положениях наносим положения центров масс S2 и S4 и средним их плавной кривой, в результате чего получим траектории центров масс шатунов 2 и 4 (см. рис.1).

Рис. 1

  1. Определение скоростей точек механизма

В курсовом проекте рассматриваются различные шарнирно-рычажные и кулисные механизмы. Рассмотрим их в отдельности.

Шарнирно-рычажный механизм (рис. 2а). Заданы размеры механизма, величина и направление угловой скорости ведущего звена (см. прил. 1). Угловая скорость постоянна. Скорость точки А определяем по формуле VA1lOA, м/с. Из точки О (рис. 2б), которая называется полюсом плана скоростей, откладываем перпендикулярно ОА отрезок оа, соответствующий скорости точки А. Масштаб скорости будет равен

КV = , м/с·мм.

Затем определяем скорость точки В, которая является общей для звеньев 2 и 3. Используя теорему о сложении скоростей в переносном и относительном движениях, запишем векторное уравнение, связывающее скорости точек А и В:

+. (1)

Здесь одной чертой подчеркивается скорость, известная по направлению (направление указано), и двумя чертами - скорость, известная по величине и направлению. Из точки О (абсолютная скорость всегда проходит через полюс) проводим направление скорости VB, а из точки а - направление VВ/А. Точка пересечения этих линий в определяет величины неизвестных скоростей:

VB = кV · ов, м/с; VB/А = кV · ав, м/с.

Учитывая, что при вращательном движении относительные и абсолютные скорости пропорциональны расстоянию до оси вращения, находим скорости центров масс шатуна 2, коромысла 3 и точки Е:

; , м/с (2)

или

= ; аs2 = ab, мм.

Отложив отрезок аs2 на плане скоростей по направлению ав и соединив О и S2, определим скорость :

= к V ·as2, м/с.

Аналогично рассчитаем скорости S3 и Е:

= ; os3 = , мм

= ; oе = , мм.

Найденные отрезки откладываем на плане скоростей.

Скорость точки D находим из уравнений, подобных уравнению (1):

, . (3)

Рис. 2

Направление скорости VD/A проводим через точку а (см. рис. 2б), в направление VD/В - через точку в. Точку их пересечения d соединяем с полюсом скоростей о м находим скорость точки D = к V ·ad, м/с. Для определения скорости точки F составим уравнение (4)

Из полюса о проводим горизонтальную линию, а из точки е - прямую, перпендикулярную EF, до пересечения с горизонтальной. Получим точку f, тогда = к V ·af, м/с; = к V ·еf, м/с.

Находим скорость точки S4:

= ; s4е =еf .

Отложив отрезок s4е на прямой еf, соединяем полюс о с точкой s4, тогда = к V ·оs4, м/с.

На рис. 2 д показан механизм с ползушкой, которая перемещается по дуге вв с радиусом в точке С. Определение скоростей в этом случае не отличается от вышеизложенного.

Кулисный механизм. Случай I. В механизме изображенном на рис. 3, точка А принадлежит кривошипу 1 и ползуну 2 и совершает движение по окружности радиусом ОА. Точка В принадлежит кулисе 3, которая совпадает с точкой А и перемещается в данный момент времени по траектории вв. Скорость точки А определяется так же, как в механизме с кривошипом и коромыслом (см. рис. 2а). Поворот кулисы 3 будем считать переносным движением, а движение ползуна 2 вдоль паза кулисы относительным. Тогда на основании той же теоремы о сложении переносного и относительного движений запишем

. (5)

Из полюса О плана скоростей (рис. 3б) проводим отрезок оа, пропорциональный скорости точки А, затем направления скоростей VB и VА/3 до пересечения в точке в, которая определяет длины отрезков последних. Отсюда VB= кV · ов, м/с; VA/3V · ав, м/с. Так как точки В, S3 и D лежат на одной прямой и принадлежат звену 3, их относительные скорости пропорциональны расстояниям = ; = ,

откуда оs3 = , мм; оd = , мм откладываем на плане скоростей 9см. рис. 3б).

Кулисный механизм. Случай 2. В механизме, показанном на рис. 4а, точка В принадлежит кулисе 2, точка С - кулисному камню. В данный момент времени точки В и С совпадают. Скорость точки А определяется аналогично первым двум.

Составим уравнение для определения скорости точки В:

. (6)

Для решения этого уравнения необходимо знать направления скорости VB, для чего запишем второе уравнение:

.

Переносная скорость точки VС равна нулю (точка С лежит на оси вращения кулисы 3). Относительная скорость VB/С направлена вдоль паза кулисы 3 (рис. 4б), т.е. вдоль АD, тогда

= .

На плане скоростей (рис. 4в) откладываем отрезок оа, пропорциональный скорости точки А. Из точек о и а проводим направления скоростей VB и VB/А. Точка в определяет отрезки, пропорциональные скоростям VB и VB/А. Тогда VB = кV · ов, м/с; VB/А = кV · ав, м/с.

Скорости точек S2 и D определяются из отношений

= ; = .

Откуда находим as2 и ad:

аs2 = , мм; аd = , мм

и откладываем их на плане скоростей (рис. 4в). Соединив полюс о с точками s2 и d, находим = кV · оs2, м/с; VD = кV · оd, м/с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]