Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы на биллеты.docx
Скачиваний:
11
Добавлен:
12.03.2015
Размер:
36.1 Кб
Скачать

1).Место и роль математики в современно мире, мировой культуре и истории. Геометрия Евклида как первая естественная научная теория. Достоинства и недостатки математического языка.

“Математика” – слово греческого происхождения. То, что греки назвали “mathema” – познание, наука было известно задолго до них. Греки же смогли впервые понять и по достоинству оценить это знание, придать ему системный характер и включить в исходное понятие философии – понятие “бытие”, через которое они выражали единство мира. Математика, наряду с астрономией, медициной, архитектурой стоит у истоков современной науки, о чем свидетельствуют, в частном, “Начала” Евклида, книга о геометрии, написанная им в III в. до н. э. Используя математику, Г. Галилей и И. Ньютон создали первую научную механическую теорию.

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В настоящее время принято несколько искусственно разделять культуру на гуманитарную и естественно-научную. “Гуманитарное” преподавание математики невозможно без изучения ее истории. Сюда входят и краткие сведения о возникновении тех или иных математических понятий и идей, о жизни выдающихся ученых. Другая сторона математического образования – изучение приложений математики. В настоящее время создается система примеров и задач, ориентированных на специально-предметные приложения, в частном, на географические. Гуманитарный потенциал математики раскрывается по следующим направлениям.

  1. Математика изучает математические модели реальных процессов. Это позволит человеку, владеющему математическим языком, глубже проникнуть в суть явлений, правильно ориентироваться в окружающей действительности.

  2. Математика “ум в порядок приводит”. Известно влияние математики на формирование мышления и личностных черт человека.

  3. Человек, формирующий математическое утверждение, проводящий математическое доказательство, оперирует не обыденной, а предметной речью, строящейся по определенным законам (краткость, четкость, лаконичность, минимизация и т. д.). Предметная речь оказывает существенное влияние и на развитие литературной речи.

  4. Изучая математику, человек постоянно осознает свое развитие, “подмнение”.

2).Понятие множество, элементы множества. Пустое множество. Подмножество, равные множества. Универсальное множество. Круги Эйлера. Основные операции над множествами.

Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит, и не имеющее определения. Однако, можно дать описание множества, например, в формулировке Георга Кантора:

Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).

Другая формулировка принадлежит Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое». Также возможно косвенное определение через аксиомы теории множеств.

В математической логике и дискретной математике часто употребляемый синоним множества — алфавит.

Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если а — элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а ∉ А (а не принадлежит А). В отличие от мультимножества каждый элемент множества уникален, и в множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его: {6, 11} = {11, 6} = {11, 11, 6, 11, 6}.

Пусто́е мно́жество (в математике) — множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойством. Пустое множество является своим (тривиальным) подмножеством, но не является своим элементом.

Пустое множество является конечным множеством и имеет наименьшую мощность среди всех множеств. Пустое множество — единственное множество, для которого класс множеств, равномощных ему, состоит из единственного элемента (самого́ пустого множества). Также, пустое множество — единственное множество, имеющее ровно 1 подмножество (само себя), и единственное множество, равномощное любому своему подмножеству.

Пустое множество тривиальным образом является разрешимым (а значит, перечислимым и арифметическим), транзитивным (англ.) и вполне упорядоченным множеством (для любого отношения порядка). Пустое множество является наименьшим порядковым числом и наименьшим кардинальным числом. В топологии, пустое множество является одновременно замкнутым и открытым множеством.

\in-цепочка, начинающаяся с произвольного множества, каждый последующий член которой является элементом предыдущего, всегда через конечное число шагов завершается пустым множеством (см. аксиому регулярности). Таким образом, пустое множество является «строительным кирпичиком», из которого строятся все остальные множества.

Множество A является подмножеством множества B, если любой элемент, принадлежащий A, также принадлежит B. Формальное определение:

(A \subset B) \Leftrightarrow ( x \in A \Rightarrow x \in B ).

Множество B называется надмно́жеством множества A, если A — подмножество B.

Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Тогда пишут A = B. Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a, b, c допускает шесть видов записи:

{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.

Универса́льное мно́жество — в математике множество, содержащее все объекты и все множества. Универсальное множество единственно.

Универсальное множество обычно обозначается U (от англ. universe, universal set), реже E.

Круги́ Э́йлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Леонардом Эйлером. Используется в математике, логике, менеджменте и других прикладных направлениях.

Важный частный случай кругов Эйлера — диаграммы Эйлера — Венна, изображающие все 2^n комбинаций n свойств, то есть конечную булеву алгебру. При n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Однако этим методом ещё до Эйлера пользовался выдающийся немецкий философ и математик Готфрид Вильгельм Лейбниц. Лейбниц использовал их для геометрической интерпретации логических связей между понятиями, но при этом всё же предпочитал использовать линейные схемы.

Пример получения произвольных кругов Эйлера из диаграмм Венна с пустыми (чёрными) множествами

Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году. Поэтому такие схемы иногда называют Диаграммы Эйлера — Венна.

Бинарные операции

Ниже перечислены основные операции над множествами:

пересечение:

A\cap B:=\{x\mid x\in A\land x\in B\}.

объединение:

A\cup B:=\{x\mid x\in A\lor x\in B\}.

Если множества A и B не пересекаются,то A\cap B=\varnothing. Их объединение обозначают также: A+B=A\cup B.

разность (дополнение):

A\setminus B:=A\cap\overline B=\{x\mid x\in A\land x\notin B\}.

симметрическая разность:

A\triangle B\equiv A\dot-B:=(A\cup B)\setminus(A\cap B)=A\cap\overline B+\overline A\cap B=\{x\mid(x\in A\land x\notin B)\lor(x\notin A\land x\in B)\}.

Декартово или прямое произведение:

A\times B=\{(a,\;b)\mid a\in A,\;b\in B\}.

Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

Унарные операции

Абсолютное дополнение:

\overline A:=\{x\mid x\notin A\}.

Операция дополнения подразумевает некоторый универсум (универсальное множество U, которое содержит A):

\overline A=U\setminus A.

Относительным же дополнением называется А\В (см.выше):

Мощность множества:

|A|

Результатом является кардинальное число (для конечных множеств — натуральное).

Множество всех подмножеств (булеан):

2^X:=\{A\mid A\subset X\}

Обозначение происходит из того, что \left|2^X\right|=2^{|X|} в случае конечных множеств.

3).Основные структуры на множестве: перестановки, сочетания, размещения.

Определение: Перестановка n-элементного множества М есть упорядоченный набор длины n, составленный из попарно различных элементов множества М. Обозначим через множество всех перестановок из n элементов и через Рn число всех перестановок из n элементов. Например, если M = {а,b,с}, то РM = {(а,b,с), (а,с,b), (b,а,с). (b,с.а), (с,а,b), (с,b,а)}; Рn =3!= 6.

Определение: Сочетание из n элементов по r элементов в каждом сочетании есть r-элементное подмножество в n-элементном множестве М. Обозначим через множество всех сочетаний из n элементов по r и через Crn число всех сочетаний из n элементов по r. Например, если M = {а,b.с}, то С1M = {(а), (b), (с)}; C2M = {(а,b),(а,с),(b,с)}; С13 = |С1M | = 3; С23=|С2M|= 3.

Определение: Размещение из n элементов по r есть упорядоченный набор, состоящий из r различных элементов, взятых из n-элементного множества M.

Обозначим через ArM множество всех размещений из М по r и через Arn – число всех размещений из n элементов по r.

Пример: M = (а,b,с); A1M = {(а), (b). (с)}; A2M = {(а,b),(а,с), (b,с),(b,а),(с,а),(с,b)}; A13 = |A1M| = 3; A23 = | A2M | = 6.

В размещениях, перестановках, сочетаниях элементов некоторого n-элементного множества могут допускаться повторы элементов. Будем называть их размещениями, перестановками, сочетаниями с повторами. Обозначим через A’rM, P’rM, C’rM – множества всех размещений, перестановок, сочетаний множества М с повторами, а через A’rn, P’rn, C’rn- их числа соответственно. Иногда чтобы подчеркнуть число элементов конфигурации, говорят: r-размещение, r-сочетание, r-перестановка. Например, если M={a,b,c}, то C’2M = {(а,а),(b,b),(с,с),(а,b),(а,с),(b,с)}; C’23 = |C’2M| = 6; A’2M =

{(а,а),(b,b),(с,с),(а,b),(а,с),(b,с),(b,а),(с,а),(с,b)}; A’23 = 9.

Размещения, перестановки, сочетания, составленные из элементов некоторого множества M, называются комбинаторными конфигурациями из множества М. Всякая конфигурация (а1, а2,…,аr) множества М лежит в декартовом произведении MхMх…хM, состоящем из r сомножителей. Мощности множеств комбинаторных конфигураций называются комбинаторными числами.