Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2. книга по теории ДВС 09. 2012.doc
Скачиваний:
226
Добавлен:
15.02.2015
Размер:
18.9 Mб
Скачать

3.5 Основы теории двс 2012 Тепловой баланс и теплонапряженность двигателя Тепловой баланс двигателя

Тепло, выделяющееся при сгорании топлива, не может быть полно­стью превращено в полезную работу, так как в соответствии со вторым законом термодинамики часть этого тепла должна быть передана хо­лодному источнику. В реально выполненных двигателях, работающих по действительному циклу, имеют место дополнительные потери тепла в охлаждающую воду, с отработавшими газами и др. Количественное распределение тепловой энергии топлива на полезную работу и потери при превращении тепла в механическую работу в цилиндрах двигателя носят название теплового баланса.

Все подведенное тепло, полученное от сгорания топлива ---100%

разделяется примерно на составные части согласно таблице.

Совершает полезную работу----------------------45-55 %

Потери тепла с выпускными газами 25- 40 %

Потери с охлаждающей водой и маслом 15-28 %

Потери в результате неполного сгорания 5-10 %

Потери от теплового излучения ДВС 3-6%

Тепловой баланс двигателя определяется не аналитически, а на ос­новании экспериментальных данных при испытании двигателя. Однако и в этом случае часть тепловых потерь не поддается учету.

В общем виде уравнение теплового баланса имеет следующий вид:

Q = Qe + + Qg + Qx + Qs. ( 1)

Где Q —100 % подведенного тепла к двигателю при сгорании всего топлива

1. Qs учитывает :

1.1) потери от неполноты сгорания вследствие плохого пере­мешивания топлива с воздухом;

1.2) потери, эквивалентные части работы трения в подшипниках и прочих механизмах (потери тепла на трение между поршнем и цилиндром поглощаются охлаждающей водой);

1.3) по­тери от лучеиспускания

1.4) потери, эквивалентные кинетической энер­гии отработавших газов. Кроме того, в остаточный член входит неизбеж­но получающаяся при экспериментировании неувязка теплового баланса. Суммарно остаточный член Qs теплового баланса составляет 5—10% от общего количества тепла, введенного в цилиндр двигателя. Практически Qs определяют как разность между количеством затраченного тепла в единицу времени QT и следующими составляющими теплового баланса:

2. Тепло Qe, превращенное в полезную работу :

Qe=Ne дж/сек   (Qe=632Ne кал/ч) для дизелей составляет 45-55 %

3. Тепло потерянное с охлаждающей водой:

Qω=Gв (tвых- tвх) Со, для дизелей составляет 15-28 %

где  tвх и t вых — температура входящей и выходящей воды;

GB — количество воды, кг/ч;

Со — теплоемкость воды.

4. Тепло Qg, теряемое с отработавшими газами:

Qg= п.с mcp’ Tr—M1 mcpTa)Gr ------- для дизелей составляет 25-42 %

где  М п.с и M1— число молей продуктов сгорания и свежего заряда на 1 кг топлива;

mс’ р и mср— молярные теплоемкости продуктов сгорания и свеже­го заряда при р=const;

Tr и Та — температура отработавших газов и свежего заряда;

GT — количество топлива.

По тепловому балансу можно оценить долю потерь каждой из со­ставляющих баланса и при доводке двигателя определить возможность снижения принципиально устранимых потерь тепла, имеющих место в двигателе сверх неизбежных потерь. Принципиально устранимые потери включены в следующие составляющие баланса: Qg, Qw, Qx, Qs вместе с неизбежными потерями, согласно второму закону термодинамики.

Как видно из формулы теплового баланса ( 1) наибольшие потери тепла составляют с выхлопными газами.

Для повышения КПД всей силовой установки это тепло используется вторично( утилизируется) ,например для подогрева воды в утиль котлах, бойлерах и т.д.

Теплонапряженность

Тепловое состояние ЦПГ, определяющее работоспособность и надежность ее деталей в эксплуатации, называется теплонапряженностью цилиндра. Температура нагрева деталей в районе камеры сгорания ( втулка цилиндра, дно крышки цилиндра, дно поршня, район 1-го поршневого кольца, тарелки клапанов газораспределения) имеют различную температуру по причине различных термических сопротивлений, подвода и отвода тепла. Неодинаково эти детали прогреваются в осевом и радиальном направлении, что приводит к высоким тепловым напряжениям и может привести к трещинам и полному разрушению.

Особенно актуально это для современных двигателей, которые характеризуются значительным увеличением форсировки рабочего процесса за счет наддува. Рост среднего эффективного давления в два раза привел к повышению тепловой напряженности. Для снижения теплонапряженности деталей применяют меры для интенсивного охлаждения ( сверление в опорном поясе втулок цилиндров дополнительных каналов охлаждения, то же самое в донышке поршня). Также увеличивают угол предварительного выпуска газов, что приводит к увеличению доли тепла ,отводимого с выпускными газами, а это позволяет повысить мощность турбокомпрессора.

Сохранение масляной пленки на стенках втулки цилиндров, в зоне первого поршневого кольца обеспечивается температурой не выше 200-220 С. Это значение обеспечивается контролем по косвенным показателям- температурой выхлопных газов и температурой охлаждения, средним эффективным давлением.

Ограничение этих показателей в эксплуатации исключает тепловую перегрузку деталей и обеспечивает надежную работу двигателя .

Ответить на следующие вопросы:

1. дать определение теплового баланса двигателя.

2. объяснить почему невозможно получить 100% полезной работы от подведенного топлива.

3. понятие теплонапряженности ДВС

4. какие конструктивные меры принимают для снижения теплонапряженности деталей.

5. какие эксплуатационные меры ограничивают теплонапряженность ДВС.

3.6 основы теории ДВС 2012

Определение пути,скорости и ускорения поршня.

Впоршневых ДВС кривошипно-шатунный механизм преобразует поступательное движениерабочих поршней во вращательное движение коленчатого вала. В практике дизелестроения используют разные варианты конструкций КШМ, среди которых имеются и очень сложные. В зависимости от особенностей требований к судовым дизелям применяют три типа КШМ:

центральный, или КШМ (рис. 88, а), в котором оси цилиндра коленчатого вала пересекаются, наиболее распространен в судовых ДВС. Обычно судовые дизели представлены однорядными вертикальными, двухрядными вертикальными и V-образными с центральным типом КШМ. У V-образного дизеля оси цилиндров одного ряда смещены относительно осей цилиндров другого ряда на ширину кривошипной головки шатуна, так как на одну шейку вала работают две кривошипные головки шатунов. В дезаксиальном КШМ (рис. 88, б) оси цилиндра и коленчатого вала не пересекаются. Между этими осями имеется смещение а (дезаксаж) от оси цилиндра в направлении вращения вала. Обычно размер дезаксажа не превышает 10% хода поршня S. На рисунке красной стрелкой вверху указан кулачок впускного клапана более широкий,позволяющий увеличить угол открытия всасывающего клапана. Дезаксаж способствует уменьшению давления поршня на стенку цилиндра во время рабочего хода и увеличению его во время хода сжатия. Это приводит к наиболее равномерному изнашиванию рабочей втулки цилиндра. Кроме того, у дизеля с дезаксиальным КШМ в районе ВМТ замедляется скорость поршня, что благоприятствует процессу сгорания топлива. Эту схему КШМ широко применяют у высокооборотных дизелей. У КШМ с прицепным шатуном (рис. 88 в) два (или несколько) шатуна смонтированы на одной шейке коленчатого вала. Шатун, соединенный с шатунной шейкой, и соответствующий этому шатуну цилиндр называют главными. Шатун другого цилиндра, шарнирно соединенный с главным шатуном, называют прицепным, а соответствующий ему цилиндр - боковым. Такой тип КШМ применяют в некоторых конструкциях V-образных дизелей.

Движущиеся части КШМ имеют ускорения, возникают силы инерции, которые необходимо учитывать при расчетах деталей двигателя на прочность.

Задачей кинематики двигателей является определение пути, скорости и ускорения поршня, а также их графическое изображение, что в конечном счете позволит определить силы , действующие в КШМ в любой момент времени и при любом угле поворота кривошипа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]