Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
дом.КР_ТТ_эл_заочн-2010.doc
Скачиваний:
26
Добавлен:
14.02.2015
Размер:
223.74 Кб
Скачать

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФГОУ ВПО Оренбургский государственный аграрный университет

Кафедра энергообеспечения с/х

Маловский Н.А., Рязанов А.Б.

Теплотехника

Методические рекомендации по выполнению

домашней контрольной работы

Для студентов заочной формы обучения

специальности «Электрификация и автоматизация с/х»

Оренбург 2010

ВВЕДЕНИЕ

Предмет «Теплотехника» является базой для расчета и проектирования тепловых двигателей, компрессоров, сушильных и холодильных установок, теплогенераторов, теплообменников и др. Знание теплотехники позволяет технически грамотно эксплуатировать указанное оборудование и осуществлять мероприятия по повышению его экономических показателей.

При изучении предмета рекомендуется обратить внимание на основные направления развития теплоэнергетики в нашей стране и за рубежом, на вклад отечественных ученых и инженерно-технических работников в формирование технической термодинамики.

СОДЕРЖАНИЕ КУРСА

Техническая термодинамика рассматривает вопросы взаимного превращения тепловой и механической энергии, в том числе наиболее эффективные условия осуществления этих превращений. Кроме того, в курсе технической термодинамики изучаются свойства рабочих тел, участвующих в энергетических преобразованиях, и способы определения (расчета) термодинамических параметров состояния рабочих тел.

В качестве рабочего тела в технической термодинамике выступает вещество в газообразном и парообразном состоянии. Следует разобраться в понятиях – идеальный газ и реальный газ.

Основные параметры состояния рабочего тела (абсолютное удельное давление (р), удельный объем (V) и абсолютная температура (Т) связаны уравнением состояния. Уравнением состояния идеального газа является уравнение Менделеева-Клапейрона. Для реальных газов существуют различные записи уравнения состояния, например, уравнение Ван-дер-Ваальса.

Основные положения технической термодинамики рассматриваются на примере идеального газа. Кроме того, можно показать, что свойства газов в реальных условиях очень близки к свойствам идеального газа.

Поскольку в тепловых машинах и аппаратах весьма часто в качестве рабочего тела выступают смеси газов (например, газообразные топливно-воздушные смеси, продукты сгорания топлива и др.), необходимо усвоить методы расчета газовых смесей.

Приступая к изучению термодинамических процессов, следует иметь в виду, что классическая термодинамика рассматривает их как равновесные и обратимые.

При анализе термодинамических процессов (изохорного, изобарного, изотермического, адиабатного и обобщенного политропного процессов) прежде всего выясняют закономерности изменения основных параметров состояния рабочего тела (р, V и Т), а также количество тепла (Q), подведенное к рабочему телу (или отведенное от него) в ходе процесса, работу (А) расширения (или сжатия) рабочего тела, изменение внутренней энергии рабочего тела (ΔU=U2 – U1) в процессе, изменение энтальпии (Δh = h2 – h1) и изменение энтропии в ходе процесса (ΔS = S2- S1).

Для определения количества тепла, участвующего в процессе, часто необходимо определить теплоемкость тел. Вещества, находящиеся в газообразном состоянии, характеризуются массовой (с), объемной (с′) и молярной () теплоемкостями. Необходимо понять зависимость теплоемкости рабочего тела от физической природы вещества, от температуры и от характера термодинамического процесса, в котором рабочее тело участвует. Необходимо научиться пользоваться таблицами теплоемкостей газов, а также владеть приемом выбора теплоемкости как величины, независимой от температуры. Следует освоить формулы для расчета теплоемкостей газовых смесей.

Следует обратить внимание, что при изображении термодинамического процесса в координатах p-V площадь между линией процесса и осью абсцисс дает графическое изображение работы тела в этом процессе – работы расширения (если V2 > V1) и работы сжатия (если V2 < V1). При изображении термодинамического процесса в координатах T-S площадь между линией процесса и осью абсцисс дает графическое изображение тепла, участвующего в этом процессе – тепла, подводимого к рабочему телу (если S2 > S1), или тепла, отводимого от рабочего тела (если S2 < S1). При изучении курса необходимо понять физический смысл энтальпии и энтропии, которые также как P, V, Т и U являются параметрами состояния рабочего тела. Введение этих параметрических величин в курс дало возможность применить для анализа термодинамических процессов диаграмму h-S, которая нашла широкое признание в инженерной практике (прежде всего для расчета процессов изменения состояния водяного пара).

Курс технической термодинамики базируется на двух принципиальных положениях – первом и втором законах термодинамики.

Первый закон термодинамики отражает закон сохранения и превращения энергии применительно к термодинамическому процессу. Он устанавливает эквивалентность при взаимных превращениях механической и тепловой энергии и количественное соотношение при переходе одного вида энергии в другой.

Согласно первому закону термодинамики, нельзя построить «вечный двигатель 1-го рода», т.е. тепловую машину, которая бы совершала работу, не расходуя на это никакой энергии.

Уравнение первого закона термодинамики является энергетическим балансом рабочего тела, участвующего в термодинамическом процессе. Оно может быть записано (как для 1 кг вещества, так и для произвольного его количества) в форме, где связаны между собой количество тепла, участвующее в процессе, работа, совершаемая рабочим телом против внешних сил, и изменение внутренней энергии в процессе, а также в форме, где связаны между собой количество тепла, изменение энтальпии и располагаемая работа.

Второй закон термодинамики определяет направление, в котором протекают термодинамические процессы, устанавливает условия преобразования тепловой энергии в механическую, а также определяет максимальное значение работы, которая может быть произведена тепловым двигателем.

Согласно второму закону термодинамики нельзя создать «вечный двигатель 2-го рода», т.е. тепловую машину, которая бы в течении длительного времени совершала непрерывную работу при условии перехода в «получаемую» механическую энергию всего количества тепловой энергии, подводимой для этой цели к рабочему телу.

Необходимо освоить и другие трактовки второго закона термодинамики, которые сложились в период формирования изучаемой дисциплины. Следует также знать аналитическое выражение второго закона термодинамики.

Специальный раздел курса посвящен водяному пару. Изучение его свойств и связанных с ним расчетов тем более важно, что водяной пар используется как рабочее тело в теплосиловых установках, а также как теплоноситель в промышленной теплотехнике.

Следует внимательно рассмотреть процесс парообразования и понять основные состояния водяного пара – состояния влажного насыщенного пара, сухого насыщенного пара и перегретого пара. Нужно освоить понятие степени сухости пара (х).

Для того, чтобы иметь возможность определять параметры состояния водяного пара, очень важно научиться пользоваться таблицами водяного пара – таблицами насыщенного пара и таблицами перегретого пара, которые обычно приводятся в учебных пособиях по технической термодинамике или в справочных изданиях.

Термодинамические процессы водяного пара, в т.ч. и связанные с изменением его агрегатного состояния, изучаются в диаграммах р-V и Т-S. Необходимо понять характер расположения на диаграммах, построенных для водяного пара, пограничных кривых х=0 и х=1, соответственно характеризующих состояние кипящей воды и сухого насыщенного пара, а также расположение точки критического состояния водяного пара, выше которой (в указанных диаграммах) существование вещества в двухфазном состоянии невозможно.

Практические задачи, связанные с расчетом водяного пара, наглядно решаются в диаграмме h-S, на которой нанесена сетка изобар, изотерм, изохор и линий х=const, включая х=1. Следует иметь в виду, что для воды и водяного пара начало расчета h и S принято от состояния вещества в тройной точке, а внутреннюю энергию определяют по формуле U=h-pV.

Диаграмма h-S водяного пара широко используется в инженерной практике, поэтому освоение ее при изучении курса нужно считать обязательным.

В теплотехнике многие расчеты связаны с влажным воздухом, который представляет собой механическую смесь сухого воздуха и водяного пара. В начале изучения свойств влажного воздуха полезно рассмотреть возможные состояния водяного пара в воздухе в координатах р-V. Необходимо понять, почему влажный воздух, несмотря на присутствие в нем водяного пара, рассчитывается как идеальный газ.

Следует разобраться в понятиях влагосодержание воздуха (d), абсолютная влажность воздуха и относительная влажность воздуха (ϕ).

Основные процессы изменения состояния влажного воздуха, встречающиеся на практике, связаны с подводом или отводом тепла при р=const, а также с повышением или понижением его влагосодержания. Расчеты процессов изменения состояния влажного воздуха обычно осуществляют, пользуясь диаграммой H-d. По диаграмме H-d для любого состояния влажного воздуха легко определить основные параметры, а также парциальное давление водяного пара и значение температуры, при которой начинается конденсация из воздуха излишней влаги (точку росы).

В разделе курса, связанным с термодинамическими преобразованиями в потоке газообразного рабочего тела, рассматриваются вопросы истечения газов и паров из сопловых устройств, а также вопросы дросселирования.

При рассмотрении процесса дросселирования (мятия) газообразного рабочего тела следует усвоить, почему итоговым результатом этого процесса можно считать условие h-const. Полезно обратить внимание на примеры явления дросселирования, встречающиеся в инженерной практике.

Необходимо уметь выполнять расчеты истечения и дросселирования водяного пара с помощью диаграммы h-S.

В курсе технической термодинамики рассматривается процесс сжатия газообразного рабочего тела в поршневом компрессоре. При этом анализируется возможность и целесообразность сжатия идеального газа по изотерме, по адиабате и политропный процесс сжатия. Необходимо разобрать процессы, связанные с работой компрессора, в индикаторной диаграмме (диаграмме в координатах р-V) и понять причины, вызывающие необходимость создания многоступенчатых компрессоров. Следует познакомиться с особенностями работы центробежного и осевого компрессоров.

Курс технической термодинамики показывает, что непрерывная работа тепловых машин должна осуществляться на основе циклов, или круговых процессов, при осуществлении которых параметры рабочего тела изменяются от максимального значения до минимального, возвращаясь в каждом цикле к первоначальному значению.

Циклы включают процессы расширения и сжатия рабочего тела, процессы с подводом тепла и процессы с отводом тепла. Процессы, из которых складываются циклы, в теоретическом курсе рассматриваются как равновесные и обратимые. Циклы, в которых работа расширения по абсолютному значению больше работы, затрачиваемой на сжатие, являются циклами тепловых двигателей (прямые циклы). Циклы, в которых работа сжатия по абсолютной величине больше, чем работа расширения, являются циклами холодильных машин или тепловых насосов (обратные циклы).

Необходимо освоить графическое изображение прямых и обратных циклов в координатах р-V и Т-S; понимать значение площадей, получающихся при построении циклов в этих координатах.

Необходимо разобрать принципиальные схемы тепловых машин. Следует разобрать прямой и обратный циклы Карно, циклы двигателей внутреннего сгорания (ДВС), циклы газотурбинных установок (ГТУ), цикл холодильной установки и теплового насоса.

Следует понять значение и способ определения термического коэффициента полезного действия (КПД) цикла теплового двигателя (ηt). Необходимо знать формулу для определения ηt цикла Карно, а также уяснить причину низкого КПД тепловых машин.

Следует детально разобрать теоретический цикл паросиловой установки – цикл Ренкина, в т.ч. графическое изображение его в координатах р-V и T-S, а также изображение теоретического процесса расширения водяного пара в паровой турбине в диаграмме h-S. Следует рассмотреть основные способы повышения тепловой эффективности цикла Ренкина. Существенное значение при освоении этого материала имеет рассмотрение принципиальных схем и тепловых балансов конденсационной теплоэлектростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ). Необходимо также понять основные принципы теплофикации.

При разборе цикла холодильной установки следует усвоить понятие холодильного коэффициента. При разборе цикла теплового насоса следует освоить понятие отопительного коэффициента.

В теории теплообмена рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением. Эти формы теплообмена глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами одного тела. теплопроводность представляет собой молекулярный процесс передачи теплоты. В металлах при такой передаче теплоты большую роль играют свободные электроны.

Конвекция осуществляется при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. Перенос теплоты конвекцией всегда сопровождается теплопроводностью, так как при этом осуществляется и непосредственный контакт частиц с различной температурой. Одновременный перенос теплоты конвекцией и теплопроводностью называют конвективным теплообменом.

Теплообменом излучением называют передачу тепловой энергии с помощью электромагнитных волн.

Совокупность всех трех видов переноса теплоты называют сложным теплообменом.

В практических расчетах часто необходимо рассчитывать тепловые потоки, а также распределение температур в однослойных и многослойных стенках различной формы (плоской или цилиндрической).