Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
моя курсовая.docx
Скачиваний:
40
Добавлен:
10.02.2015
Размер:
368.14 Кб
Скачать

4.2 Полиплоидия

Полиплоидия - это увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации. Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному [Инге-Вечтомов, 1989].

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.  Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых ок. 47 % видов – полиплоиды [Котов, 1997г.]. 

Для получения полиплоида, можно использовать такой способ как «опыление нередуцированными гаметами».

Данные гаметы получают путём нагревания пыльцы в термостате при температуре 38-40 (градусов Цельсия), в течении 1,5-3 часов, с последующим её выдерживанием при температуре 18-20 (градусов Цельсия), и влажности воздуха 70-80 (процентов). Такой пыльцой опыляют опытное растение. Условия для опытных растений должны быть оптимальными (влажность, температура). Отбор полиплоида проводят сначала по морфологическим признакам, затем путём цитологического анализа. Всё морфологические изменения определяются по контрольному растению (растение не подверженное человеческим вмешательством).

4.3 Генная инженерия

Генная или генетическая инженерия – это совокупность биотехнологическихметодов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне.

Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК (recDNA) или рекРНК (recRNA) – вне биологических систем (in vitro), а затем вводить их в клетки.

Задачи генной инженерии

Основные направления генетической модификации организмов:

– придание устойчивости к ядохимикатам (например, к определенным гербицидам); 

– придание устойчивости к вредителям и болезням (например, Bt-модификация);

– повышение продуктивности (например, быстрый рост трансгенного лосося);

– придание особых качеств (например, изменение химического состава).

Методы генной инженерии

Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.

Для получения исходных фрагментов ДНК разных организмов используется несколько способов:

– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).

– Прямой химический синтез ДНК, например, для создания зондов.

– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).

 

В состав вектора ДНК входит не менее трех групп генов:

1. Целевые гены, которые интересуют экспериментатора.

2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов.

3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).

Практические достижения современной генной инженерии заключаются в следующем:

– Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).

– На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.

– Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения(ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс [Лобашев, 1979г.].

Заключение

Темой для написания моей курсовой работы стала ель аянская. Так как древесина используется наравне с древесиной ели европейской, но по механическим свойствам уступает ей. Имеет декоративность, ее придают синевато-белые полоски на нижней стороне хвои, благодаря ее изогнутости крона кажется сизой. Перспективна для создания контрастных групп, выделяющихся голубовато-сизой хвоей на фоне темнохвойных пород.

Для человека ель — одно из самых полезных деревьев. Очень широко используется еловая древесина. Именно из нее изготавливают лучшие сорта бумаги, искусственный шелк, шерсть и многое другое, используют в строительстве. Особенно важна древесина ели в изготовлении музыкальных инструментов (скрипок, альтов, контрабасов, пианино). Именно ее использовали знаменитые мастера Страдивариус, Амати, Гварнери. Для музыкальных инструментов в лесах отбирают 100 — 120-летние деревья с особой древесиной, у которой годичные кольца одинаковой толщины. Такие ели получили название «резонансовых». Отобранные для изготовления инструментов ели подсекали и на 3 года оставляли на корню. При этом дерево постепенно теряло влагу и древесина уплотнялась, становилась более легкой, благодаря чему инструменты получали особую силу звучания [Бобров, 1971г.].

В работе была изучена изменчивость, наследственность и генная инженерия ели аянской. Предложен свой способ получения мутанта и полиплоида.

Библиографический список

1. Алёшин, Е. П./ Алёшин, Н. Е.- Рис. Москва, 1993. 504 стр. 100

2. Бобров Е.Г. История и систематика рода Picea A. Dietr.

// Новости систематики высших растений. Л., 1971. Вып. 7. С. 5-40.

3. Булыгин, Н. Е. Дендрология / Н. Е. Булыгин [и др.]. - Москва: МГУЛ,

2010.

4. Вавилов, Н. И. Теоретические основы селекции / Н. И. Вавилов – Москва:

Наука, 1987.

5. Инге-Вечтомов, С.Г. Генетика с основами селекции / С. Г. Инге-Вечтомов. -

Москва: Высшая школа, 1989.

6. Колесников, А. И. Дендрология / А. И. Колесников. – Москва: Лесная

промышленность, 1969.

7. Котов, М. М. Генетика и селекция / М. М. Котов. - Йошкар-Ола: МарГТУ,

1997.

8. Лобашев М.Е., Ватти К.В., Тихомирова М.М. Генетика с основами селекции: Учеб. пособие для студентов пед. ин-тов по биол. спец. – М.: Просвещение, 1979. – 304 с.

9. Любавская, А. Я. Лесная селекция и генетика / А. Я. Любавская. - Москва:

Лесная промышленность, 1982.

10. Любавская, А. Я. Лесная селекция и генетика / А. Я. Любавская. - Москва:

МГУЛ, 2007

11. Мамаев С.А. Основные принципы методики исследования внутривидовой изменчивости древесных растений //

Индивидуальная эколого-географическая изменчивость растений. Свердловск, 1975. Вып. 94. С. 3–14.

12. Муратова Е. Н. 1994. Хромосомный полиморфизм в при- родных популяциях лиственницы Гмелина Larix gmelinii (Rupr.) Rupr. Цитология и генетика. 28(4) : 14—22.

13. Муратова Е. Н. 1995а. Методики окрашивания ядрышек для кариологического анализа хвойных. Бот. журн. 80(2) : 82—86.

14. Муратова Е. Н. 19956. Кариосистематика семейства Pi- naceae Lindl Сибири и Дальнего Востока: Автореф. докт. дис. Новосибирск. 32 с. Муратова Е. Н. 2000. В-хромосомы голосеменных. Успе- хи соврем, биол. 120(5): 452—465.

15. Серебряков И.Г. Морфология вегетативных органов высших растений. М.: Советская наука, 1952. 390 с.

16. Серебряков И.Г. О морфогенезе жизненной формы дерева у лесных пород средней полосы Европейской части СССР // Бюлл. МОИП. Отд. биологии. 1954. Т. LIX(1). С. 53-68.

17. Серебряков И.Г. Экологическая морфология растений: Жизненные формы покрытосеменных и хвойных. М., 1962. 378 с.

18. Царёв, А. П. Генетика лесных древесных растений / А. П. Царёв [ и др.]. –

Москва: МГУЛ, 2010.