Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
b81155.doc
Скачиваний:
66
Добавлен:
15.04.2023
Размер:
4.55 Mб
Скачать

2. Поршневой компрессор. Определение и принцип действия

Поршневым называют компрессор, у которого поршень совершает в цилиндре возвратно-поступательные движения. Простейший поршневой компрессор (рис. 28) состоит из цилиндра, в котором перемещается поршень (между стенками цилиндра и поршнем имеется небольшой зазор). Движение поршня обеспечивается кривошипношатунным механизмом от вала с приводным двигателем.

Рис. 28. Схема работы поршневого компрессора в холодильной машине

 

В крышке цилиндра расположены нагнетательный и всасывающий клапаны компрессора. За один оборот вала, т.е. за два хода поршня, в каждом цилиндре компрессора совершается полный рабочий процесс. При движении поршня вправо (по рисунку) в конденсатор надпоршневом пространстве создается разрежение и пары хладагента всасываются в цилиндр из испарителя через открывающийся клапан. При обратном ходе поршня пары сжимаются и давление возрастает. Всасывающий клапан при этом закрывается, а сжатые пары через нагнетательный клапан выталкиваются в конденсатор. Затем направление движения поршня меняется, нагнетательный клапан закрывается и компрессор вновь отсасывает пары из испарителя. Таким образом, циклически повторяется весь рабочий процесс.

Состав поршневого компрессора

Общий вид поршневого компрессора приведен на рис. 29.

В корпусе компрессора, изготовленном из чугуна, находится цилиндр и картер, в котором расположен коленчатый вал. В нижней части картера залито масло для смазки трущихся деталей компрессора. Коренные шейки коленчатого вала лежат в подшипниках, а к шатунной шейке прикреплен своей нижней головкой шатун.

Шейка вала, выходящая из картера наружу, уплотнена сальником, чтобы не было течи хладагента через зазор между валом и подшипником. На шейке вала напрессован маховик, который вращается вместе с валом от электродвигателя при помощи ременной передачи.

Рис. 29. Поршневой компрессор

 

Шатун соединен своей верхней головкой с поршнем при помощи поршневого пальца. При вращении вала поршень попеременно движется вдоль оси цилиндра от одного крайнего положения до другого на величину двойного радиуса кривошипа. На поршне надеты кольца, трущиеся по зеркалу цилиндра и уплотняющие (благодаря своей упругости) рабочую полость цилиндра, чтобы пары хладагента не могли попасть в картер.

Верхний торец цилиндра закрыт головкой. Головка цилиндра состоит из двух камер: всасывания и нагнетания. В каждой камере находится клапан, соответственно называемый всасывающим и нагнетательным. Клапаны расположены по обе стороны клапанной плиты и закрывают имеющиеся в ней отверстия, которые соединяют камеры головки с цилиндром. К камере всасывания подходит всасывающий трубопровод, соединенный с испарителем, к камере нагнетания — нагнетательный трубопровод, соединенный с конденсатором.

Рабочий процесс компрессора

Этап 1.

При движении поршня вниз рабочий объем цилиндра (объем цилиндра над поршнем) увеличивается и давление паров хладагента в нем падает.

Этап 2.

Когда давление в цилиндре станет ниже, чем давление в камере всасывания головки (в испарителе), откроется всасывающий клапан и пары хладагента из испарителя по всасывающему трубопроводу будут поступать в цилиндр. Начнется процесс всасывания. Он будет продолжаться до тех пор, пока поршень, достигнув крайнего нижнего положения (нижняя мертвая точка) в цилиндре, не начнет двигаться вверх. Рабочий объем цилиндра будет уменьшаться, а давление паров, соответственно, расти.

Этап 3.

Как только давление паров в цилиндре превысит давление в камере всасывания головки, всасывающий клапан закроется и процесс всасывания закончится. Начнется сжатие паров. Процесс сжатия будет происходить до тех пор, пока давление паров в цилиндре не превысит давления в камере нагнетания головки (в конденсаторе).

Этап 4.

В результате предыдущего этапа откроется нагнетательный клапан. Начнется процесс нагнетания, т.е. выталкивание сжатых паров из цилиндра компрессора в конденсатор.

Небольшое количество сжатых паров хладагента на этапе 4 неизбежно останется в цилиндре. Это происходит потому, что при крайнем верхнем положении поршня (верхняя мертвая точка) в цилиндре должен быть зазор между донышком поршня и клапанной плитой, чтобы поршень не ударялся о нее своим донышком. Зазор создает вредный – мертвый объем, в который также входит объем, образуемый проходным сечением отверстия в клапанной плите, соединяющего цилиндр с камерой нагнетания головки. Сжатые пары, оставшиеся в мертвом объеме (пространстве), будут расширяться в цилиндре при последующем движении поршня вниз до тех пор, пока их давление, т.е. давление в цилиндре, не станет ниже, чем давление паров хладагента в камере всасывания головки.

Вывод.

При движении поршня вниз происходит расширение паров, оставшихся в цилиндре, и всасывание новых паров хладагента из испарителя, а при движении поршня вверх – сжатие паров и нагнетание их в конденсатор.

Герметизация компрессоров

Надежность сохранения хладагента в компрессоре зависит от степени герметизации компрессора. Наиболее подвержены утечкам хладагента компрессоры открытого типа (рис. 30а,б), имеющие сальники и разъемные части корпуса.

Рис. 30. Типы компрессоров: а и б – открытые; в – полугерметичный; г – герметичный

Для герметизации такого компрессора тщательно обрабатывают плоскости разъема корпуса, уплотняя их прокладками, и соединяют большим количеством болтов. Наиболее уязвимое для утечки хладагента место выхода вала из корпуса уплотняют сложными по устройству сальниками, однако и они недостаточно надежны. Кроме того, надежность сальников значительно снижается с увеличением частоты вращения вала.

Учитывая практически неизбежные утечки хладагента, холодильники с компрессорами открытого типа заполняют несколько большим количеством хладагента, чем требуется для работы компрессора, и в процессе эксплуатации периодически его пополняют.

Лучшая герметизация обеспечивается у полугерметичных (рис. 30в) компрессоров. Двигатель таких компрессоров заключен в кожух, который прикреплен болтами к корпусу компрессора. При такой компоновке двигателя отпадает надобность в сальнике. Герметизация плоскостей разъема кожуха двигателя с корпусом компрессора обеспечивается тщательной их обработкой, а также применением уплотнительных прокладок. Наиболее надежная герметизация у герметичных (рис. 30г) компрессоров.

Устройство герметичных компрессоров

Компрессор, сопряженный с электродвигателем без промежуточной передачи и находящийся вместе с ним в общем наглухо заваренном кожухе, называют герметичным компрессором или мотор-компрессором. При таком расположении компрессора с электродвигателем исключается надобность в сальнике, обычно являющемся основным местом утечек хладагента. Ротор электродвигателя насажен непосредственно на вал компрессора, а статор закреплен на корпусе компрессора или в кожухе.

Корпус компрессора служит основной несущей частью, включающей в себя отлитый заодно цилиндр (не всегда) и коренные подшипники коленчатого вала. На корпусе монтируют все остальные детали компрессора и статор (не всегда) двигателя. Этим обеспечивается компактность конструкции мотор-компрессора.

В отличие от компрессоров открытого типа поршневые кольца в мотор-компрессоре не применяют, а необходимое уплотнение поршня в цилиндре достигается благодаря малым (0,01...0,02 мм) зазорам между ними. Клапаны (всасывающий и нагнетательный) представляют собой упругие пластинки различной формы, изготовленные из тонкой (0,10...0,30 мм) высокоуглеродистой стали.

В связи с высокими требованиями, предъявляемыми к работе бытовых холодильников, в герметичных компрессорах на линиях всасывания и нагнетания возле головки цилиндра устанавливают глушители для снижения шума, создаваемого пульсирующими парами хладагента.

Отличительной особенностью герметичных компрессоров является также наличие упругой подвески компрессора и двигателя, значительно снижающей шум и вибрации при их работе. Вибрация мотор-компрессора передается на шкаф холодильника, поэтому находящаяся в камере посуда может дребезжать. Особенно усиливается вибрация в моменты остановок компрессора.

Наружная и внутренняя подвески

Для устранения вибраций шкафа мотор-компрессор подвешивают на пружинах.

Существуют два типа подвески:

  • наружная;

  • внутренняя.

При наружной подвеске компрессор и двигатель жестко закрепляют в кожухе, а кожух подвешивают на раме на пружинах или опирают на них. Количество пружин в подвеске бывает от двух до четырех. Для того, чтобы трубопроводы соединенные с кожухом не ломались при его колебаниях, и в то же время не препятствовали работе пружин, их делают с компенсационными витками. Во многих агрегатах с наружной подвеской мотор-компрессора имеются болты, при помощи которых можно на время транспортировки агрегата (холодильника) жестко закрепить мотор-компрессор на раме. При установке холодильника на месте его эксплуатации болты отвинчивают.

При внутренней подвеске компрессор с двигателем подвешивают на пружинах внутри кожуха, а кожух жестко закрепляют на раме. В этом случае мотор-компрессор более компактен и все его наружные части жестко соединены друг с другом.

Достоинства наружной подвески:

  • лучшие условия охлаждения обмоток статора благодаря хорошему тепловому контакту статора с кожухом. При внутренней подвеске условия охлаждения обмоток ухудшаются, так как статор не касается стенок кожуха и тепло от обмоток передается кожуху через пары хладагента, имеющие относительно плохую теплопроводность;

  • возможность устранения дефекта в случае нарушения крепления подвески и появления стука. При внутренней подвеске такая возможность исключается и холодильный агрегат приходится подвергать сложному ремонту.

Достоинства внутренней подвески:

  • меньший уровень шума работающего компрессора;

  • вибрации почти не передаются на кожух.

В последние годы внутренняя подвеска мотор-компрессора нашла широкое применение. Основной недостаток ее – ухудшение охлаждения обмоток – компенсируют устройством температуростойкой изоляции обмоток, допускающей повышенный нагрев.

 

Основная часть компрессора типа ДХ с кривошипно-шатунным механизмом – корпус (рис. 31), отлитый из чугуна, на котором монтируют все остальные детали. В верхней части корпуса находится цилиндр, с одной стороны которого внизу расположены задний подшипник коленчатого вала, с другой – гнездо для переднего подшипника. Передний подшипник съемный, что дает возможность заменять коленчатый вал. Подшипник представляет собой чугунную втулку, которую вставляют в гнездо и закрепляют стопором и замочным кольцом. На коленчатый вал насажен ротор электродвигателя. К. верхнему торцу цилиндра четырьмя винтами привернута головка, собранная с клапанным устройством и глушителями.

Рис. 31. Мотор-компрессор типа ДХ в сборе

 

Наличие глушителей на стороне всасывания и нагнетания значительно снижает шум при работе компрессора. Пары хладона всасываются из кожуха в глушитель через две трубки. Это дает возможность уменьшить проходное сечение каждой трубки (сохраняя необходимое общее проходное сечение), что также способствует снижению шума.

Поршень компрессора стальной с двумя уплотняющими канавками. Шатун изготовлен из чугуна. Нижняя головка разъемная, без вкладышей. Крышку нижней головки закрепляют двумя болтами. К верхней головке крепят поршневой палец.

Палец крепят при помощи стопора, который частично входит в отверстие верхней головки шатуна. Стопор опирается противоположным концом на клин, находящийся в торцовом отверстии пальца и поджимаемый все время пружиной. Такое устройство крепления пальца обеспечивает надежное соединение и бесшумность при работе.

Коленчатый вал стальной, двухопорный. На задней коренной шейке имеется эксцентрическая выточка, к которой при помощи пружины прижимается плунжер.

Эксцентрическая выточка служит ротором, а плунжер – лопаткой масляного насоса, при помощи которого осуществляется смазка трущихся деталей компрессора.

Вал компрессора приводится во вращение электродвигателем, ротор которого непосредственно напрессован на конец задней коренной шейки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]