Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по информатике.doc
Скачиваний:
95
Добавлен:
09.02.2015
Размер:
1.63 Mб
Скачать
      1. Логические функции

Логическая функция (функция алгебры высказываний) f(X1, X2, …, Xn) от n переменных – n-арная операция на множестве [0; 1]. В этой функции логические переменные X1, X2, …, Xn представляют собой высказывания и принимают значения 0 или 1.

Существует различных логических функций отn переменных.

Логические операции, рассмотренные в предыдущем разделе, можно рассматривать как логические функции от двух переменных.

Набор функций, с помощью которого можно представить (выразить) все логические функции, называется функционально-полным или базисом. Основными базисами являются:

1) булевый базис, состоящий из конъюнкции, дизъюнкции и отрицания;

2) базис NOR, состоящий из стрелки Пирса;

3) базис NAND, включающий штрих Шеффера.Рассмотрим некоторые способы представления логических функций.

Аналитический. Функция задается в виде алгебраического выражения, состоящего из функций одного или нескольких базисов, применяемых к логическим переменным.

Табличный. Функция задается в виде таблицы истинности (соответствия), которая содержит 2n строк (по числу наборов аргументов), n столбцов по числу переменных и один столбец значений функции. В такой таблице каждому набору аргументов соответствует значение функции.

Числовой. Функция задается в виде десятичных (восьмеричных, шестнадцатеричных) эквивалентов номеров тех наборов аргументов, на которых функция принимает значение 1. Нумерация наборов начинается с нуля. Аналогичным образом логическая функция может быть задана по нулевым значениям.

    1. Классификация эвм

      1. По принципу действия

В этом случае критерием является форма представления информации, с которой они работают. Цифровые ВМ – вычислительные машины дискретного действия; работают с информацией, представленной в дискретной, а точнее в цифровой форме.

Аналоговые ВМ - вычислительные машины непрерывного действия; работают с информацией, представленной в непрерывной (аналоговой) форме.

      1. По назначению

Универсальные, проблемно-ориентированные, специализированные.

      1. По этапам создания

Разделение ЭВМ на поколения условно, так как поколения сменялись постепенно, поэтому временные границы между поколениями размыты. Поколения ЭВМ разделяют в зависимости от физических элементов или технологии их изготовления, используемые при построении ЭВМ. При сравнении быстродействия ЭВМ под операцией понимают операцию над числами с плавающей точкой.

Поколения ЭВМ

Поколение

Элементная база процес-сора

Макс. емкость ОЗУ, байт

Макс. быстро-действие процес-сора, оп/с

Основные языки програм-мирования

Управление ЭВМ пользователем

Первое

1951-1954

электронные лампы

102

104

Машинный код

Пульт управления и перфокарты

Второе

1958-1960

транзисторы

103

106

Ассемблер

Перфокарты и перфоленты

Третье

1965-1968

ИС

104

107

Процедур-ные языки высокого уровня (ЯВУ)

Алфавитно-цифровой терминал

Четвертое

1976-1979

БИС

105

108

Процедур-ные ЯВУ

Монохромный или графический дисплей, клавиатура

Четвертое

с 1985

СБИС

107

109

Процедур-ные ЯВУ

Цветной графический дисплей, клавиатура, «мышь» и др.

Пятое

усовершенст-вованные СБИС

108

1012

Языки логического программи-рования

Цветной графический дисплей и устройства голосовой связи

Первое поколение ЭВМ (1951-1954) строилось на электронных лампах, которые могли быстро переключаться из одного состояния в другое. Лампы имели большие размеры, поэтому ЭВМ первого поколения, состоящие из десятков тысяч ламп, занимали целые этажи и были энергоемки. Программы записывались в ЭВМ с помощью установки перемычек на особом машинном коде.

Второе поколение ЭВМ (1958-1960) строилось на транзисторах – полупроводниковых приборах, которые могли находиться в одном из двух состояний. По сравнению с лампами транзисторы имели малые размеры и потребляемую мощность. Увеличение производительности обеспечивалось за счет более высокой скорости переключения и использованием обрабатывающих устройств, работающих параллельно. Площадь, требующаяся для размещения ЭВМ, уменьшилась до нескольких квадратных метров. Программы записывались на перфокарты – картонные карточки, на которых были выбиты или не выбиты дырочки, кодирующие 0 и 1. Программирование осуществлялось на языке Ассемблер, команды которого затем переводились в машинный код.

Третье поколение ЭВМ (1965-1968) строилось на интегральных схемах (ИС). ИС представляет собой электрическую цепь определенного функционального назначения, которая размещается на кремниевой основе. ИС содержит сотни и тысячи транзисторных элементов, что позволило уменьшить размеры, потребляемую мощность, стоимость и увеличить надежность системы. Помимо Ассемблера, программирование осуществлялось на языках высокого уровня (ЯВУ), имевших большое количество операторов. Каждый оператор объединял несколько команд языка Ассемблер.

Четвертое поколение ЭВМ (1976-по сегодняшний день) строилось на больших интегральных схемах (БИС). БИС содержат не набор нескольких логических элементов, из которых строились затем функциональные узлы компьютера, а целиком функциональные узлы. Примером БИС является микропроцессор. БИС способствовали появлению персональных компьютеров. Увеличение количества транзисторов до миллионов привело к появлению сверхбольших ИС (СБИС).

Пятое поколение ЭВМ существует в теории. Основное требование к ЭВМ – машина должна сама по поставленной цели составить план действий и выполнить его. Такой способ решения задачи называется логическим программированием. Элементная база процессора – СБИС с использованием опто- и криоэлектроники. Оптоэлектроника – раздел электроники, связанный с эффектами взаимодействия оптического излучения с электронами в веществах (главным образом в твердых телах) и использованием этих эффектов для генерации, передачи, хранения, обработки и отображения информации. Криоэлектроника (криогенная электроника) – область науки и техники, занимающаяся применением явлений, имеющих место в твердых телах при температуре ниже 120 К (криогенных температурах) в присутствии электрических, магнитных или электромагнитных полей (явление сверхпроводимости), для создания электронных приборов и устройств.