Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа №2. Комплексные соединения.doc
Скачиваний:
139
Добавлен:
09.02.2015
Размер:
91.14 Кб
Скачать

Лабораторная работа

Комплексные соединения

  1. Цель работы

Ознакомление со свойствами комплексных соединений, способами их получения и устойчивостью в растворах. Получение навыков составления реакций с участием комплексных соединений

  1. Основные теоретические положения

    1. Строение комплексных соединений

Строение комплексных соединений и их поведение в растворах объясняет координационная теория, созданная в конце ХIХ века швейцарским химиком Альфредом Вернером. Соединения такого типа, как BF3, CH4, NH3, H2O, CO2 и др., в которых элемент проявляет свою обычную валентность, называются валентнонасыщенными соединениями или соединениями первого порядка. При взаимодействии соединений первого порядка друг с другом получаются соединения высшего порядка (гидраты, аммиакаты, продукты присоединения кислот, органических молекул, двойные соли и многие другие).

CoCl3 + 6NH3 = CoCl3 . 6NH3 или [Co(NH3)6]Cl3

BF3 + HF = BF3 . HF или H[BF4]

Fe(CN)3 + 3KCN = Fe(CN)3 . 3KCN или K3[Fe(CN)6]

Согласно теории Вернера, любой элемент после насыщения его обычных валентностей способен проявлять ещё и дополнительную валентность – координационную. Именно за счёт этой валентности и происходит образование соединений высшего порядка – комплексных соединений.

В каждом комплексном соединении различают внутреннюю и внешнюю сферы. Более тесно связанные частицы внутренней сферы называют комплексным ионом или комплексом (заключают в квадратные скобки).

Центральный ион или атом внутренней сферы комплекса, вокруг которого группируются ионы или молекулы, называется комплексообразователем или ядром комплекса, а координируемые им во внутренней сфере ионы или молекулы – лигандами или аддендами. Роль комплексообразователей чаще всего выполняют катионы переходных металлов, реже анионы или нейтральные атомы, имеющие вакантные орбитали. Примерами лигандов могут служить анионы: Г-, OH-, CN-, CNS-, NO2-, CO32-, C2O42-; нейтральные молекулы: Н2О, NH3, CO, NO, Г2, N2H4, NH2-CH2-CH2-NH2(этилендиамин), аминоуксусная кислота NH2-CH2-COOH. Координационное число (К.Ч.) или координационная валентность – общее количество лигандов, входящих во внутреннюю сферу комплекса. Известны координационные числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще других встречаются 4, 6 и 2. Эти числа соответствуют наиболее симметричной геометрической конфигурации комплекса – октаэдрической (6), тетраэдрической (4) и линейной (2). Координационная валентность зависит от природы комплексообразователя и лигандов, от степени окисления комплексообразователя, от соотношения размеров комплексообразователя и лигандов, концентрации раствора комплексного соединения.

Чем выше степень окисления комплексообразователя, тем больше координационное число: [Cu+(NH3)2]+, но [Cu2+(NH3)4]2+.

Незаряженные лиганды обычно присоединяются к комплексообразователю в большем числе, чем заряженные: [Сo(H2O)6]2+, но [СoCl4]2.-.

Например, с ионами Cl-, Br-, I- алюминий проявляет К.Ч. 4, а с меньшим ионом F- - 6: K[AlCl4],но K3[AlF6].

2.2. Химическая связь в комплексных соединениях.

Метод валентных связей является весьма наглядным способом описания комплексных соединений. В его основе лежат следующие положения:

  1. Связь между комплексообразователем и лигандами донорно-акцепторная σ-типа. Лиганды предоставляют электронные пары, а ядро комплекса – свободные орбитали.

  2. Орбитали центрального атома, участвующие в образовании связи, подвергаются гибридизации, которая определяет геометрию комплекса. Тип гибридизации определяется числом, природой и электронной структурой лигандов.

  3. Дополнительное упрочение комплекса обусловлено тем, что наряду с σ-связями могут возникать и π-связи. Это происходит, если занятая электронами орбиталь центрального атома перекрывается с вакантной орбиталью лиганда.

  4. Магнитные свойства комплекса объясняются исходя из заселённости орбиталей. При наличии неспаренных электронов комплекс парамагнитен. Спаренность электронов обусловливает диамагнетизм комплексного соединения.

Рассмотрим, как МВС описывает электронную структуру и свойства некоторых комплексов, образованных 3d–элементами: кобальтом, никелем и медью. В таблице собственные электроннные пары комплексообразователей изображены сплошными стрелками, а электронные пары лигандов, ответственные за донорно-акцепторные σ-связи, представлены пунктирными стрелками.

Комплекс

Заселённость орбиталей комплексообразователя

Тип гибридизации ядра комплекса

Структура комплекса

Co3+

3d

4s

4p

4d

[CoF6]3-

sp3d2

Октаэдр.

[NiCl4]2-

sp3

Тетраэдр.

[Cu(NH3)2]+

sp

Линейная

Наряду с моноядерными комплексами, включающими только один центральный атом, существуют полиядерные, в структуре которых одновременно присутствуют два или несколько центральных атомов-комплексообразователей.

Помимо МВС для описания комплексных соединений широко используют Теорию кристаллического поля (ТКП), основанную на электростатической модели, её усовершенствованную модель – Теорию поля лигандов (ТПЛ), в которой электростатическое взаимодействие дополнено идеей перекрывания орбиталей, и, наконец, Метод молекулярных орбиталей (ММО).