Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие биохимия часть 1.doc
Скачиваний:
366
Добавлен:
07.02.2015
Размер:
8.75 Mб
Скачать

3. Проламины и глютелины.

Проламины - белки растительного происхождени. Содержат 20-25% глутаминовой кислоты и 10-15% пролина. Растворимы в 60-80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок.

Глютелины - простые белки, содержатся в семенах злаков, в зелёных частях растений. Для них характерно высокое содержание глутаминовой кислоты и наличие лизина. Растворимы в разбавленных растворах щелочей. Глютелины - запасные белки.

1.6.2. Сложные белки

1. Хромопротеины (от греч. chroma - краска) состоят из простого белка и связанного с ним окрашенного небелкового компонента. Различают гемопротеины и флавопротеины. Они участвуют в таких процессах, как дыхание, транспорт кислорода и диоксида углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др.

К группе гемопротеинов относятся гемоглобин, миоглобин, цитохромы, каталаза, пероксидаз. Все они содержат железопорфирины, но различные по составу и структуре белки, и выполняют разнообразные биологические функции. Видовые различия гемоглобина обусловлены глобином.

Рассмотрим строение гемоглобина – белка крови. Небелковым компонентом гемоглобина является гем - пигмент, придающий крови красный цвет. Основу его структуры составляет протопорфирин IX (рис. 5). В центре гема расположен атом железа, связанный с двумя атомами азота ковалентно и с двумя другими - координационными связями. Гем «обернут» одной полипептидной цепью. В молекуле гемоглобина взрослого человека НbА (от англ. adult- взрослый) содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин (рис. 6). Две α-цепи содержат по 141 аминокислотному остатку, две β-цепи - по 146.

Рис. 5. Гем

Рис. 6. Гемоглобин

В крови взрослого человека присутствуют также гемоглобин НbА2 (2α, 2δ цепи, 2,5%) и НbA3 (менее 1%, отличается строением -цепи).

Известен фетальный гемоглобин (гемоглобин новорожденных) HbF, состоящий из 2 α- и 2 γ-цепей. Гемоглобин F обладает повышенным сродством к кислороду и позволяет сравнительно малому объёму крови плода выполнять кислородоснабжающие функции более эффективно. Кровь новорожденного содержит до 80% HbF, к концу 1-го года жизни он почти целиком заменяется на НbА.

Болезни гемоглобинов (более 200) называют гемоглобинозами.

1. Гемоглобинопатии, в основе которых лежит наследственное изменение структуры какой-либо цепи нормального гемоглобина. В крови человека открыто около 150 различных типов мутантных гемоглобинов.

Аномальные гемоглобины различаются по физико-химическим свойствам (электрофоретическая подвижность, растворимость, изоэлектрическая точка, сродство к кислороду).

Классический пример гемоглобинопатии - серповидно-клеточная анемия, распространенная в странах Южной Америки, Африки и Юго-Восточной Азии. Химический дефект сводится к замене глутаминовой кислоты в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК. У HbS снижены растворимость и сродство к кислороду. Эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. HbS после отдачи кислорода в тканях превращается в плохо растворимую дезоксиформу и выпадает в осадок в виде веретенообразных кристаллов. Они деформируют клетку и приводят к гемолизу. Гетерозиготная форма аномалии протекает бессимптомно или сопровождается легкой гемолитической анемией. У гомозиготных особей уже с первых месяцев жизни развивается тяжелая форма серповидноклеточной анемии. Болезнь протекает остро, и дети часто умирают в раннем возрасте.

2. Талассемии - группа заболеваний с наследственным нарушением синтеза одной из цепей глобина. Различают α- и β-талассемии. Гемоглобинопатия Н - один из вариантов -талассемии - проявляется гемолитической анемией, выпадением в осадок гемоглобин Н, увеличением селезенки, тяжелыми костными изменениями.

3. Железодефицитные анемии - нарушение синтеза гемоглобина вследствие дефицита железа. Основными причинами являются кровопотери и недостаток богатой гемом пищи - мяса и рыбы.

Производные гемоглобина

Оксигемоглобин HbO2. Молекулярный кислород присоединяется к каждому гему Hb при помощи координационных связей железа. Присоединение каждой молекулы кислорода облегчает присоединение последующей. Эта аллостерическая зависимость получила название эффекта Бора. Оксигемоглобин, попадая в ткани, теряет кислород, становясь дезоксигемоглобином.

Карбгемоглобин HbCO2 соединение гемоглобина с углекислым газом. Он нестоек и быстро диссоциирует в легочных капиллярах с отщеплением СО2.

Карбоксигемоглобин HbCO - продукт присоединения оксида углерода CO (угарного газа) к гемоглобину. Гемоглобин имеет высокое сродство к СО и прочно с ним связывается. Гемоглобин теряет способность связывать кислород, и наступает смерть от удушья.

Метгемоглобин MtHb - форма гемоглобина, в которой железо гема находится в трёхвалентном состоянии. Не способен переносить кислород. Образуется из свободного гемоглобина под действием различных окислителей, а в организме - при некоторых отравлениях.

Метгемоглобинемия - появление в крови метгемоглобина. Выделяют наследственные и приобретенные метгемоглобинемии. Наследственные развиваются в результате наличия нестабильных или аномальных гемоглобинов. Среди приобретенных могут быть токсические метгемоглобинемии экзогенного происхождения, возникающие при воздействии ряда химических веществ (нитраты, нитриты, анилин, некоторые лекарственные препараты), и эндогенного происхождения, развивающиеся вследствие нарушения продукции и всасывания нитратов при энтероколитах. При значительной метгемоглобинемии возникает кислородное голодание (гипоксия).

Методом качественного определения различных производных гемоглобина является исследование их спектров поглощения.

Миоглобин - глобулярный белок, осуществляющий в мышцах запасание молекулярного кислорода и передачу его окислительным системам клеток. Состоит из одной полипептидной цепи. Как и в гемоглобине, активным центром молекулы, связывающим O2, является гем. Миоглобин определяет цвет мышц.

К хромопротеинам относятся также ферменты каталаза, пероксидаза, цитохромы.

Флавопротеины – хромопротеины, простетические группы которых представлены производными изоаллоксазина - флавинмононуклеотидом (ФМН) и флавинадениндинуклеотидом (ФАД). Флавопротеины входят в состав оксидоредуктаз - ферментов, катализирующих окислительно-восстановительные реакции в клетке.

2. Липопротеины состоят из белка и простетической группы, представленной каким-либо липидом (нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды). Липопротеины широко распространены и выполняют разнообразные биологические функции. Представители липопротеинов - белок ткани легких, липовителлин желтка куриного яйца и т.д.

Липопротеины присутствуют в свободном состоянии (главным образом в плазме крови). Липопротеины сыворотки крови содержат гидрофобное липидное ядро, окруженное полярными липидами и оболочкой из белков, получивших название апобелки. Они обеспечивают транспорт водонерастворимых липидов.

Липиды, ковалентно связанные с белком, служат якорем, с помощью которого белки прикрепляются к мембране. Это т.н. структурированные липопротеины (липиды мембран клетки, миелиновой оболочки нервных волокон).

3. Фосфопротеины - сложные белки, в состав которых в качестве небелкового компонента входит фосфорная кислота, присоединенная к полипептидной цепи сложноэфирной связью через остатки серина или треонина. Возможен также ионный тип связи.

К фосфопротеинам относятся казеиноген молока, овальбумин белка куриного яйца, ряд ферментов, например, РНК-полимеразы. Большое количество фосфопротеинов содержится в клетках ЦНС.

Фосфопротеины являются ценным источником энергетического и пластического материала в процессе эмбриогенеза и постнатального роста и развития организма, участвуют в регуляции ядерной активности клетки, транспорте ионов и окислительных процессах в митохондриях.

4. Гликопротеины - сложные белки, содержащие, помимо простого белка или пептида, линейные или разветвленные гетероолигосахаридные цепи, содержащие от 2 до 15 остатков гексоз, пентоз и конечный углевод (N-ацетилгалактозамин или др.). Углеводный компонент соединяется с белком ковалентными связями.

Гликопротеины - белки плазмы крови (кроме альбуминов), некоторые ферменты, муцин слюны, белки хрящевой и костной тканей. Гликопротеины являются важным структурным компонентом клеточных мембран. Они обеспечивают клеточную адгезию, молекулярное и клеточное узнавание. Углеводные компоненты, помимо информативной функции, повышают стабильность молекул, в состав которых они входят, к различного рода химическим, физическим воздействиям и предохраняют их от действия протеиназ.

Гликопротеины мембран эритроцитов предопределяют группу крови у человека. К типичным гликопротеинам относятся интерфероны, иммуноглобулины.

Интерфероны - ингибиторы размножения многих типов вирусов. Они образуются в клетке в ответ на внедрение вирусной нуклеиновой кислоты. Интерфероны считаются основными защитными белками не только против вирусной инфекции, но и при опухолевых поражениях.

Иммуноглобулины, или антитела, выполняют защитную функцию, обезвреживая поступающие в организм чужеродные вещества - антигены любой химической природы. Выделяют три основных класса иммуноглобулинов: IgG, IgA, IgM; минорные классы иммуноглобулинов плазмы человека обозначаются как IgD и IgE. Иммуноглобулины разных классов отличаются по молекулярной массе, по концентрации в крови, по биологическим свойствам.

При ревматоидных артритах часто синтезируются аномальные антитела с необычайно короткими сахарными цепями, что вызывает стимуляцию иммунной системы против самого организма.

Протеогликаны - комплексы белка и гликозаминогликанов. Углевод в этих соединениях составляет основную часть молекулы (до 95 %). Типичными гликозаминогликанами являются гиалуроновая кислота (ее основная функция - в соединительной ткани - связывание воды) и гепарин, участвующий в регуляции свертывания крови.

5. Металлопротеины, помимо белка, содержат ионы какого-либо одного металла или нескольких металлов.

1. Белки, содержащие негемовое железо.

Ферритин (около 20% железа) сосредоточен главным образом в селезенке, печени, костном мозге. Выполняет роль депо железа в организме.

Трансферрин сыворотки крови (около 0,13% железа) транспортирует ионы железа в ретикулоциты, в которых осуществляется биосинтез гемоглобина.

2. Металлоферменты. Это белки, обладающие ферментативной активностью и содержащие катионы металлов. В металлоферментах связь белка с металлом более прочная. Ферменты, активируемые ионами металлов, менее прочно связаны с металлами.

АТФ-аза содержит Na, К, Са, Мg, алкогольдегидрогеназа – Zn, цитохромоксидаза – Cu, протеиназы - Mg, К.

6. Нуклеопротеины (НП) - устойчивые комплексы нуклеиновых кислот с белками.

Нуклеиновые кислоты (НК) - ДНК и РНК – полимеры нуклеотидов.

ДНК находится в основном в ядре клетки и в митохондриях.

РНК обнаруживается во всех частях клетки. Различают мРНК (синтезируется на ДНК, определяет порядок аминокислот в молекуле белка), рРНК (входит в состав рибосом), тРНК (транспортирует аминокислоты к месту синтеза белка). НК обеспечивают хранение и передачу наследственной информации путем программирования синтеза клеточных белков.

В состав нуклеиновых кислот входят азотистые основания (ДНК - аденин, гуанин, цитозин, тимин, РНК - аденин, гуанин, цитозин, урацил), углеводы (дезоксирибоза и рибоза соответственно), остатки фосфорной кислоты.

Нуклеотиды (рис. 7) состоят из трех компонентов: пиримидинового или пуринового основания, пентозы (рибозы) и фосфорной кислоты. Нуклеотиды – нуклеозидфосфаты.

Рис. 7. Строение нуклеотида

ДНК, выделенная из разных тканей одного и того же вида, имеет одинаковый состав азотистых оснований. Закономерности состава и количественного содержания азотистых оснований установлены впервые Э. Чаргаффом и были названы правилами Чаргаффа:

1. Молярная доля пуриновых оснований равна молярной доле пиримидиновых оснований: А + Г = Ц + Т.

2. Количество аденина и цитозина равно количеству гуанина и тимина:

А + Ц = Г + Т.

3. Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина: А = Т, Г = Ц.

4. Коэффициент специфичности равен (Г + Ц)/(А + Т) (у животных 0,54-0,94, у микроорганизмов 0,45-2,57).