Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Corrosion of Ceramic and Composite Materials.pdf
Скачиваний:
173
Добавлен:
15.11.2014
Размер:
4.48 Mб
Скачать

Corrosion of Specific Crystalline Materials

237

oxides with platinum is of considerable importance. Ott and Raub [5.176] reported that platinum acts as a catalyst for the reduction of refractory oxides by hydrogen, carbon, CO, and organic vapors. These reactions can occur as low as 600°C and result because of the affinity of platinum for the metal of the oxide by forming intermetallic compounds and crystalline solutions.

Gotman and Gutmanas [5.177] reported that titanium powder reacted with silicon nitride forming a complex interfacial layer structure consistent with the Ti–N–Si and Ti–Si phase diagrams. A 1-hr heat treatment in an evacuated stainless steel bag at 1273 K yielded two morphologically different main layers. A fine-grained layer (1.5 µm thick) next to the silicon nitride was composed of mostly Ti5Si3. A very thin layer adjacent to the silicon nitride contained TiN with some dissolved silicon. As the silicon increased away from the silicon nitride, the phases changed into TiN plus Ti5Si3. The next layer was almost pure Ti5Si3 with some additional titanium adjacent to the next main layer. A coarse-grained layer came next, containing a mixture of what was thought to be Ti3Si particles imbedded within Ti metal with a little dissolved silicon. Similar results were obtained when different times (20, 40, and 60 min) and temperatures (1173, 1223, and 1323 K) were used.

5.4 ADDITIONAL RELATED READING

Amoroso, G.G.; Fassina, V. Stone Decay and Conservation; Materials Science Monographs 11; Elsevier: Amsterdam, 1983; 453 pp.

Guthrie, G.D., Jr., Mossman, B.T., Eds.; Health Effects of Mineral Dusts, Reviews in Mineralogy; Min. Soc. Am.: Washington, DC, 1993; Vol. 28, 584 pp.

Lea, F.M. The Chemistry of Cement and Concrete; Edward Arnold Publishers: London, 1970.

Taylor, H.F.W. Mineralogy, microstructure, and mechanical properties of cements. Proc. Br. Ceram. Soc. 1979, 29, 147–163.

Copyright © 2004 by Marcel Dekker, Inc.

238

Chapter 5

5.5EXERCISES, QUESTIONS, AND PROBLEMS

1.Determine whether or not molten aluminum will react with cordierite by calculating the free energy of reaction. If so what are the reaction products?

2.List the following oxides in the order of most

thermodynamically stable to least stable: Al2O3, CaO, Fe2O3, MgO, and ZrO2.

3.Discuss several cases where corrosion is beneficial.

4.Using the Al2O3–MgO–SiO2 phase diagram, determine the interface, if any, that should form on an alumina crucible containing a silica melt at 1000, 1200, and 1400°C. What changes would one expect if a mullite or spinel crucible were substituted for the alumina? Which of three materials is the best at each temperature?

5.Discuss how forced convection (erosion) affects the reaction interface layer thickness.

6.Calculate the critical slag layer thickness for the passive- to-active oxidation of SiC in air at 1400°C using the following equation:

Assume C*=0.080 mol/m3 and A=0.31 µm.

7.Does the tetrahedra packing density of the different polymorphs of silica affect their dissolution? If so, how?

8.Explain why the reported oxidation of silicon nitride and/ or carbide by various investigators varies.

9.Describe the difference between active and passive oxidation of SiC.

REFERENCES

5.1.Sandhage, K.H.; Yurek, G.J. Indirect dissolution of (Al, Cr)2O3 in CaO–MgO–Al2O3–SiO2 (CMAS) melts. J. Am. Ceram. Soc. 1991, 74 (8), 1941–1954.

5.2.Oishi, Y.; Cooper, A.R., Jr.; Kingery, W.D. Dissolution in

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

239

ceramic systems: III. Boundary layer concentration gradients.

J. Am. Ceram. Soc. 1965, 48 (2), 88–95.

5.3.Bonar, J.A.; Kennedy, C.R.; Swaroop, R.B. Coal-ash slag attack and corrosion of refractories. Ceram. Bull. 1980, 59 (4), 473–478.

5.4.Sandhage, K.H.; Yurek, G.J. Indirect dissolution of sapphire into calcia-magnesia-alumina-silica melts: electron microprobe analysis of the dissolution process. J. Am. Ceram. Soc. 1990, 73 (12), 3643–3649.

5.5.Sandhage, K.H.; Yurek, G.J. Indirect dissolution of sapphire into silicate melts. J. Am. Ceram. Soc. 1988, 71 (6), 478–489.

5.6.McCauley, R.A. unpublished data, 1975.

5.7.Hilger, J.P.; Babel, D.; Prioul, N.; Fissolo, A. Corrosion of AZS and fireclay refractories in contact with lead glass. J. Am. Ceram. Soc. 1984, 64(4), 213–220.

5.8.Matsushima, M.; Yadoomaru, S.; Mori, K.; Kawai, Y. A fundamental study on the dissolution rate of solid lime into liquid slag. Trans. Iron Steel Inst. Jpn. 1977, 17, 442–449.

5.9.Bates, J.L. Heterogeneous dissolution of refractory oxides in molten calcium-aluminum silicate. J. Am. Ceram. Soc. 1987, 70 (3), C55–C57.

5.10.Umakoshi, M.; Mori, K.; Kawai, Y. Corrosion kinetics of refractory materials in molten CaO-FeO-SiO2 slags. Kyushu Daigaku Kogaku Ih. 1980, 53, 191–197.

5.11.Bonetti, G.; Toninato, T.; Bianchini, A.; Martini, P.L. Resistance of refractories to corrosion by lead-containing glasses. Proc. Br. Ceram. Soc. 1969, 14, 29–40.

5.12.Clauss, H.; Salge, H. Electron micro-probe analysis of the dissolution behavior of fusion cast tank blocks. Glastech. Ber. 1974, 47 (7–8), 159–181.

5.13.Derobert, M. Microscope and x-ray diffraction identification of crystalline phases in refractories and their corrosion products in glass tanks. Bull. Soc. Fr. Ceram. 1975, 109, 31–36.

5.14.Lakatos, T.; Simmingskold, B. The influence of constituents on the corrosion of pot clays by molten glass. Glass Technol. 1967, 8 (2), 43–47.

Copyright © 2004 by Marcel Dekker, Inc.

240

Chapter 5

5.15.Lakatos, T.; Simmingskold, B. Influence of viscosity and chemical composition of glass on its corrosion of sintered alumina and silica-glass. Glastek. Tidskr. 1971, 26 (4), 58–68.

5.16.Orlova, R.G.; Moroz, Kh.I; Naidenova, G.A. Kinetics of mullite dissolution in alkali and alkaline-earth melts (obtained during the firing of mullite porcelain). Neorg. Stekla Pokryt. Mater. 1979, (No. 4), 103–109 (Russ).

5.17.Thomas, E.A.; Brock, W.W. A post-mortem examination of zircon and bonded alumina-zirconia-silica paving. Proc. 10th International Congress on Glass, Ceram. Soc. Japan, No.2 Refractories and Furnaces, 2–9 to 2–19, 9 July 1974.

5.18.Chung, Y-D; Schlesinger, M.E. Interaction of CaO–FeO–SiO2 slags with partially stabilized zirconia. J. Am. Ceram. Soc. 1994, 77 (3), 611–616.

5.19.Muan, A. Thermodynamics aspects of the application of ceramics/refractories in advanced energy technologies. In

Ceramics in Advanced Energy Technologies; Krockel, H., Merz, M., Van der Biest, O., Eds.; D. Reidel Pub. Co.: Dordrecht 1984; 384–366.

5.20.Tsai, R.L.; Raj, R. Dissolution kinetics of β-Si3N4 in an Mg– Si– O–N glass. J. Am. Ceram. Soc. 1982, 65 (5), 270–274.

5.21.Ferber, M.K.; Ogle, J.; Tennery, V.J.; Henson, T. Characterization of corrosion mechanisms occurring in a sintered SiC exposed to basic coal slags. J. Am. Ceram. Soc. 1985, 68 (4), 191–197.

5.22.McKee, D.W.; Chatterji, D. Corrosion of silicon carbide in gases and alkaline melts. J. Am. Ceram. Soc. 1976, 59 (9– 10), 441–444.

5.23.Deal, B.E.; Grove, A.S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 1965, 36 (12), 3770– 3778.

5.24.Lea, F.M. The Chemistry of Cement and Concrete; Edward Arnold Publishers: London, 1970.

5.25.Taylor, H.F.W. Mineralogy, microstructure, and mechanical properties of cements. Proc. Br. Ceram. Soc. 1979, 29, 147–163.

5.26.Jennings, H.M. Aqueous solubility relationships for two types

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

241

of calcium silicate hydrate. J. Am. Ceram. Soc. 1986, 69 (8), 614–618.

5.27.McConnell, J.D.C. The hydration of larnite (β-Ca2SiO4) and bredigite (β’Ca2SiO4) and the properties of the resulting gelatinous mineral plombierite. Mineral. Mag. 1955, 30, 672–680.

5.28a. Scientific Basis for Nuclear Waste Management IV, Materials Research Society Symposia Proceedings; Topp, S.V., Ed.; North-Holland: NY, 1982; Vol. 6.

5.28b. Scientific Basis for Nuclear Waste Management V, Materials Research Society Symposia Proceedings; Lutze, W., Ed.; MRS: Pittsburgh, PA, 1982; Vol. 11.

5.28c. Scientific Basis for Nuclear Waste Management VI, Materials Research Society Symposia Proceedings; Brookins, D.G., Ed.; MRS: Pittsburgh, PA, 1983; Vol. 15.

5.28d. Scientific Basis for Nuclear Waste Management VII, Materials Research Society Symposia Proceedings, McVay, G.L., Ed.; MRS: Pittsburgh, PA, 1984; Vol. 26.

5.28e. Scientific Basis for Nuclear Waste Management VIII, Materials Research Society Symposia Proceedings; Jantzen, C.M., Stone, J.A., Ewing, R.C., Eds.; MRS: Pittsburgh, PA, 1985; Vol. 44.

5.28f. Scientific Basis for Nuclear Waste Management IX, Materials Research Society Symposia Proceedings; Werme, L.O., Ed.; MRS: Pittsburgh, PA, 1986; Vol. 50.

5.28g. Scientific Basis for Nuclear Waste Management X, Materials Research Society Symposia Proceedings; Bates, J.K., W.B., Seefeldt, Eds.; MRS: Pittsburgh, PA, 1987; Vol. 84.

5.28h. Scientific Basis for Nuclear Waste Management XI, Materials Research Society Symposia Proceedings; Apted, M.J., Westerman, R.E., Eds.; MRS: Pittsburgh, PA, 1988; Vol. 112.

5.28i. Scientific Basis for Nuclear Waste Management XII, Materials Research Society Symposia Proceedings; Lutze, W., Ewing, R.C., Eds.; MRS: Pittsburgh, PA, 1989; Vol. 127 .

5.28j. Scientific Basis for Nuclear Waste Management XIII, Materials Research Society Symposia Proceedings, Oversby, V.M., Brown, P.W., Eds.; MRS: Pittsburgh, PA, 1989; Vol. 176.

5.28k. Scientific Basis for Nuclear Waste Management XIV;

Copyright © 2004 by Marcel Dekker, Inc.

242

Chapter 5

Materials Research Society Symposia Proceedings; Abrajans, T., Jr., Johnson, L.H., Eds.; MRS: Pittsburgh, PA, 1991; Vol. 212.

5.29.Advances in Ceramics Vol 8: Nuclear Waste Management;

Wicks, G.G., Ross, W.A., Eds.; Am. Ceram. Soc.: Columbus, OH, 1984; 746 pp.

5.30.Advances in Ceramics Vol 20: Nuclear Waste Management II. Clark, D.E., White, W.B., Machiels, A.J., Eds.; Am. Ceram. Soc.: Westerville, OH, 1986 (773 pp.).

5.31.Ceramic Transactions Vol 9: Nuclear Waste Management III;

Mellinger, G.B., Ed.; Am. Ceram. Soc.: Westerville, OH, 1990; 595 pp.

5.32.Ceramic Transactions Vol 23: Nuclear Waste Management IV; Wicks, G.G., Bickford, D.F., Bunnell, L.R., Eds.; Am. Ceram. Soc.: Westerville, OH, 1991; 799 pp.

5.33.Sato, T.; Sato, S.; Okuwaki, A. Corrosion behavior of alumina ceramics in caustic alkaline solutions at high temperatures. J. Am. Ceram. Soc. 1991, 74 (12), 3081–3084.

5.34.Brady, P.V.; House, W.A. Surface-controlled dissolution and growth of minerals . In Physics and Chemistry of Mineral Surfaces; Brady, P.V., Ed.; CRC Press: New York, 1996; 225– 305. Chap. 4.

5.35.Wilding, L.P.; Smeck, N.E.; Drees, L.R. Silica in soils: quartz, cristobalite, tridymite, and opal. In Minerals in Soil Environments; Dinauer, R.C., Ed.; Soil Sci. Soc. Am.: Madison, WI, 1977; 471–552. Chap. 14.

5.36.Schnitzer, M.; Kodama, H. Reactions of minerals with soil humic substances. In Minerals in Soil Environments; Dinauer, R.C., Ed.; Soil Sci. Soc. Am.: Madison, WI, 1977; 741–770. Chap. 21.

5.37.Graustein, W.C.; Cromack, K., Jr.; Sollins, P. Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science, New Series 1977, 198 (4323), 1252–1254.

5.38.Liang, D-T; Readey, D.W. Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures. J. Am. Ceram. Soc. 1987, 70 (8), 570–577.

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

243

5.39.Guthrie, G.D., Jr. Biological effects of inhaled minerals. Am. Mineral. 1992, 77(3/4), 225–243.

5.40.Hume, L.A.; Rimstidt, J.D. The biodurability of chrysotile asbestos. Am. Mineral. 1992, 77(9/10), 1125–1128.

5.41.Webster, R.P.; Kukacka, L.E. Effects of acid deposition on Portland cement concrete. In Materials Degradation Caused by Acid Rain; Baboian, R., Ed.; ACS Symposium Series 318, Am. Chem. Soc.: Washington, DC, 1986; 239–249.

5.42.Amoroso, G.G.; Fassina, V. Stone decay and conservation.

Materials Science Monographs 11; Elsevier: Amsterdam, 1983; 453 pp.

5.43.Kitano, Y. Polymorphic formation of calcium carbonite in thermal springs with an emphasis on the effect of temperature. Bull. Chem. Soc. Jpn. 1962, 35, 1980.

5.44.Kitano, Y. Behavior of various inorganic ions in the separation of calcium carbonate from a bicarbonate solution. Bull. Chem. Soc. Jpn. 1962, 35, 1973.

5.45.Charola, A.E.; Lazzarini, L. Deterioration of brick masonry caused by acid rain. In Materials Degradation Caused by Acid Rain; Baboian, R., Ed.; ACS Symposium Series 318, Am. Chem. Soc.: Washington, DC, 1986; 250–258.

5.46.Yoshimura, M.; Hiuga, T.; Somiya, S. Dissolution and reaction of yttria-stabilized zirconia single crystals in hydrothermal solutions. J. Am. Ceram. Soc. 1986, 69 (7), 583–584.

5.47.Murphy, D.W.; Johnson, D.W., Jr.; Jin, S.; Howard, R.E. Processing techniques for the 93°K Superconductor Ba2YCu3O7. Science August 19, 1988, 241, 922–930.

5.48.Myhra, S.; Savage, D.; Atkinson, A.; Riviere, J.C. Surface modification of some titanate minerals subjected to hydrothermal chemical attack. Am. Mineral. 1984, 69 (9/ 10), 902–909.

5.49.Kastrissios, T.; Stephenson, M.; Turner, P.S. Hydrothermal dissolution of perovskite: implications for synroc formulation. J. Am. Ceram. Soc. 1987, 70 (7), C144-C146.

5.50.Buykx, W.J.; Hawkins, K.; Levins, D.M.; Mitamura, H.; Smart, R.St.C; Stevens, G.T.; Watson, K.G.; Weedon, D.; White, T.J. Titanate ceramics for the immobilization of sodium-bearing

Copyright © 2004 by Marcel Dekker, Inc.

244

Chapter 5

high-level nuclear waste. J. Am. Ceram. Soc. 1988, 71 (8), 678–688.

5.51.Bright, E.; Readey, D.W. Dissolution kinetics of TiO2 in HFHCl solutions. J. Am. Ceram. Soc. 1987, 70 (12), 900–906.

5.52.Harris, L.A.; Cross, D.R.; Gerstner, M.E. Corrosion suppression on rutile anodes by high energy redox reactions.

J.Electrochem. Soc. 1977, 124 (6), 839–844.

5.53.Horkans, J.; Shafer, M.W. Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of conducting oxides of molybdenum and tungsten.

J.Electrochem. Soc. 1977, 124 (8), 1196–1202.

5.54.Horkans, J.; Shafer, M.W. An investigation of the electrochemistry of a series of metal dioxides with rutile-type structure: MoO2, WO2, ReO2, RuO2, OsO2, and IrO2.

J.Electrochem. Soc. 1977, 124 (8), 1202–1207.

5.55.Clayton, J.C. In-pile and out-of-pile corrosion behavior of thoriaand urania-based nuclear fuels. Ceram. Eng. Sci. Proc. 1988, 9 (9–10).

5.56.Bowen, P.; Highfield, J.G.; Mocellin, A.; Ring, T.A. Degradation of aluminum nitride powder in an aqueous environment. J. Am. Ceram. Soc. 1990, 73 (3), 724–728.

5.57.Hirayama, H.; Kawakubo, T.; Goto, A.; Kaneko, T. Corrosion behavior of silicon carbide in 290°C water. J. Am. Ceram. Soc. 1989, 72 (11), 2049–2053.

5.58.Sato, T.; Tokunaga, Y.; Endo, T.; Shimada, M.; Komeya, K.; Komatsu, M.; Kameda, T. Corrosion of silicon nitride ceramics in aqueous hydrogen chloride solutions. J. Am. Ceram. Soc. 1988, 71 (12), 1074–1079.

5.59.Sato, T.; Tokunaga, Y.; Endo, T.; Shimada, M.; Komeya, K.; Komatsu, M.; Kameda, T. Corrosion of silicon nitride ceramics in aqueous HF solutions. J. Mater. Sci 1988, 23 (10), 3440–3446.

5.60.Seshadri, S.G.; Srinivasan, M. Liquid corrosion and hightemperature oxidation effects on silicon carbide/titanium diboride composites. J. Am. Ceram. Soc. 1988, 71 (2), C72C74.

5.61.Grjotheim, K.; Holm, J.L.; Krohn, C.; Thonstad, J. Recent

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

245

progress in the theory of aluminium electrolysis. In Selected Topics in High Temperature Chemistry; Forland, T., Grjotheim, K., Motzfeldt, K., Urnes, S., Eds.; Universitetsforlaget: Oslo, 1966; 151–178.

5.62.Siljan, O.-J.; Seltveit, A. Chemical reactions in refractory linings of alumina reduction cells. In UNITECR ’91 CONGRESS, 2d Edition; German Refractories Association, Bonn Verlag Stahleisen mbH: Düsseldorf, 1991; 59–65.

5.63.Allaire, C. Refractory lining for alumina electrolytic cells. J. Am. Ceram. Soc. 1992, 75 (8), 2308–2311.

5.64.Lawson, M.G.; Kim, H.R.; Pettit, F.S.; Blachere, J.R. Hot corrosion of silica. J. Am. Ceram. Soc. 1990, 73 (4), 989–995.

5.65.Baumgartner, C.E. Metal oxide solubility in eutectic Li/K carbonate melts. J. Am. Ceram. Soc. 1984, 67 (7), 460–462.

5.66.Huseby, I.C.; Klug, F.J. Chemical compatibility of ceramics for directionally solidifying Ni-base eutectic alloys. Ceram. Bull. 1979, 58 (5), 527–535.

5.67.Borom, M.P.; Arendt, R.H.; Cook, N.C. Dissolution of oxides of Y, Al, Mg, and La by molten fluorides. Ceram. Bull. 1981, 60 (11), 1168–1174.

5.68.Ballman, A.A.; Laudise, R.A. Crystallization and solubility of zircon and phenacite in certain molten salts. J. Am. Ceram. Soc. 1965, 48 (3), 130–133.

5.69.Jacobson, N.S.; Smialek, J.L. Hot corrosion of sintered α-SiC at 1000°C. J. Am. Ceram. Soc. 1985, 68 (8), 432–439.

5.70.Smialek, J.L.; Jacobson, N.S. Mechanism of strength degradation for hot corrosion of α-SiC. J. Am. Ceram. Soc. 1986, 69 (10), 741–752.

5.71.Jacobson, N.S. Kinetics and mechanism of corrosion of SiC by molten salts. J. Am. Ceram. Soc. 1986, 69 (1), 74–82.

5.72.Fox, D.S.; Jacobson, N.S. Molten-salt corrosion of silicon nitride: I, sodium carbonate. J. Am. Ceram. Soc. 1988, 71 (2), 128–138.

5.73.Jacobson, N.S.; Fox, D.S. Molten-salt corrosion of silicon nitride: II. Sodium sulfate. J. Am. Ceram. Soc. 1988, 71 (2), 139–148.

Copyright © 2004 by Marcel Dekker, Inc.

246

Chapter 5

5.74.Jacobson, N.S.; Stearns, C.A.; Smialek, J.L. Burner rig corrosion of SiC at 1000°C. Adv. Ceram. Mater. 1986, 1 (2), 154–161.

5.75.Sato, T.; Kubato, K.; Shimada, M. Corrosion kinetics and strength degradation of sintered α-silicon carbide in potassium sulfate melts. J. Am. Ceram. Soc. 1991, 74 (9), 2152–2155.

5.76.Cree, J.W.; Amateau, M.F. Mechanical behavior of SiC exposed to molten lithium and lithium salts. Ceram. Eng. Sci. Proc. 1987, 8 (7–8), 812–814.

5.77.Tressler, R.E.; Meiser, M.D.; Yonushonis, T. Molten salt corrosion of SiC and Si3N4 ceramics. J. Am. Ceram. Soc. 1976, 59 (5–6), 278–279.

5.78.Raeder, C.H.; Knorr, D.B. Stability of YBa2Cu3O7-x in molten chloride salts. J. Am. Ceram. Soc. 1990, 73 (8), 2407–2411.

5.79.Lee, B.J.; Lee, D.N. Calculation of phase diagrams for the YO1.5- BaO-CuOx system. J. Am. Ceram. Soc. 1989, 72 (2), 314–319.

5.80.Kim, S.M.; Lu, W.-K.; Nicholson, P.S.; Hamielec, A.E. Corrosion of aluminosilicate refractories in iron-manganese alloys. Ceram. Bull. 1974, 53 (7), 543–547.

5.81.Brondyke, K.J. Effect of molten aluminum on alumina-silica refractories. J. Am. Ceram. Soc. 1953, 36 (5), 171–174.

5.82.Siljan, O.-J.; Rian, G.; Pettersen, D.T.; Solheim, A.; Schøning, C. Refractories for molten aluminum contact: part I. Thermodynamics and kinetics. Refract. Appl. News 2002, 7 (6), 17–25.

5.83.Allaire, C.; Desclaux, P. Effect of alkalies and of a reducing atmosphere on the corrosion of refractories by molten aluminum. J. Am. Ceram. Soc. 1991, 74 (11), 2781–2785.

5.84.Lindsay, J.G.; Bakker, W.T.; Dewing, E.W. Chemical resistance of refractories to Al and Al-Mg alloys. J. Am. Ceram. Soc. 1964, 47 (2), 90–94.

5.85.Cornie, J.A.; Chiang, Y.-M.; Uhlmann, D.R.; Mortensen, A.; Collins, J.M. Processing of metal and ceramic matrix composites. Ceram. Bull. 1986, 65 (2), 293–304.

5.86.Wills, R.R.; Sekercioglu, I.; Niesz, D.E. The interaction of

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

247

molten silicon with silicon aluminum oxynitrides. J. Am. Ceram. Soc. 1980, 63 (7–8), 401–403.

5.87.Nelson, H.G. A challenge to materials: advanced hypersonic flight hydrogen and high temperature materials. In Proc. 1993 Conf. on Processing, Fabrication and Applications of Advanced Composites, Long Beach, CA; Upadhya, K., Ed.; ASM: Ohio, Aug 9-11, 1993; 11–20.

5.88.de Jong, R.; McCauley, R.A.; Fordham, R.J.; Riley, F.L. High temperature corrosion of some silicon nitrides. Proceedings of the European Materials Research Society Conference, Strasbourg, France, Nov. 26–29, 1985.

5.89.Anderson, N.C. Basal plane cleavage cracking of synthetic sapphire arc lamp envelopes. J. Am. Ceram. Soc. 1979, 62 (1–2), 108–109.

5.90.van Hoek, J.A.M.; van Loo, F.J.J.; Metselaar, R. Corrosion of alumina by potassium vapor. J. Am. Ceram. Soc. 1992, 75(1), 109–111.

5.91.Mayberry, M.L.; Boyer, W.H.; Martinek, C.A.; Neely, J.E. Effect of alternating oxidizing—reducing atmospheres on basic refractories. Presented at the Pacific Coast Regional Meeting of the Am. Ceram. Soc. Oct. 1970.

5.92.Wang, S.C.P.; Anghaie, S.; Collins, C. Reaction of uranium hexafluoride gas with alumina and zirconia at elevated temperatures. J. Am. Ceram. Soc. 1991, 74 (9), 2250–2257.

5.93.Muan, A. Reactions between iron oxides and aluminasilica refractories. J. Am. Ceram. Soc. 1992, 75 (6), 1319– 1330.

5.94.McCauley, R.A. The effects of vanadium upon basic refractories. In UNITECR ’89 Proceedings; Trostel, L.J., Jr., Ed.; Am. Ceram. Soc.: Westerville, OH, 1989; 858–863.

5.95.Parker, F.J.; McCauley, R.A. Investigation of the system CaO- MgO-V2O5:I. Phase equilibria. J. Am. Ceram. Soc. 1982, 65 (7), 349–351.

5.96.Parker, F.J.; McCauley, R.A. Investigation of the system CaOMgO-V2O5: II. Crystalline solutions and crystal chemistry. J. Am. Ceram. Soc. 1982, 65 (9), 454–456.

5.97.McGarry, M.J.; McCauley, R.A. Subsolidus phase equilibria

Copyright © 2004 by Marcel Dekker, Inc.

248

Chapter 5

of the MgO-V2O5-SiO2 system. J. Am. Ceram. Soc. 1992, 75 (10), 2874–2876.

5.98.Ready, D.W. High temperature gas corrosion of ceramic composites. Ceram. Eng. Sci. Proc. 1992, 13 (7–8), 301– 318.

5.99.Lepistö, T.T.; Lintula, P.V.; Mäntylä, T.A. TZP-ceramics in humid conditions at 150°C. Ceram. Eng. Sci. Proc. 1988, 9 (9–10), 1517–1523.

5.100. Lepistö, T.T.; Mäntylä, T.A. A model for structural degradation of Y-TZP ceramics in humid atmosphere . Ceram. Eng. Sci. Proc. 1989, 10 (7–8), 658–667.

5.101. Singhal, S.C. Oxidation of silicon nitride and related materials. In Nitrogen Ceramics; Riley, R.L., Ed.; NATO Adv. Study Inst. Ser.:E, Appl. Sci., No. 23, Noordhoff: Leyden, 1977; 607–626.

5.102. Vaughn, W.L.; Maahs, H.G. Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air. J. Am. Ceram. Soc. 1990, 73 (6), 1540–1543.

5.103. Choi, D.J.; Fischbach, D.B.; Scott, W.D. Oxidation of chemically-vapor-deposited silicon nitride and single-crystal silicon. J. Am. Ceram. Soc. 1989, 72(7), 1118–1123.

5.104. Du, H.; Tressler, R.E.; Spear, K.E. Thermodynamics of the SiN–O system and kinetic modeling of oxidation of Si3N4. J. Electrochem. Soc. 1989, 136 (11), 3210–3215.

5.105. Luthra, K.L. Some new perspectives on oxidation of silicon carbide and silicon nitride. J. Am. Ceram. Soc. 1991, 74 (5), 1095–1103.

5.106. Luthra, K.L. A mixed-interface reaction/diffusion-controlled model for oxidation of Si3N4. J. Electrochem. Soc. 1991, 138 (10), 3001–3007.

5.107. Ogbuji, L.U.J.T. Role of Si2N2O in the passive oxidation of chemically-vapor-deposited Si3N4. J. Am. Ceram. Soc. 1992, 75 (11), 2995–3000.

5.108. de Jong, R. Incorporation of additives into silicon nitride by colloidal processing of metal organics in an aqueous medium. Univ. Microfilms Int. (Ann Arbor, MI), Order No. DA9123266. Diss. Abstr. Int. 1991, B52 (3), 1660.

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

249

5.109. Joshi, P.N. Metal-organic surfactants as sintering aids for silicon nitride in an aqueous medium. MS thesis, Rutgers University, 1992.

5.110. Bergstrom, L.; Pugh, R.J. Interfacial characterization of silicon nitride powders. J. Am. Ceram. Soc. 1989, 72 (1), 103–109.

5.111. Tripp, W.C.; Graham, H.C. Oxidation of Si3N4 in the range 1300 to 1500°C. J. Am. Ceram. Soc. 1976, 59 (9–10), 399–403.

5.112. Kim, H.-E.; Moorehead, A.J. High-temperature gaseous corrosion of Si3N4 in H2-H2O and Ar-O2 environments. J. Am. Ceram. Soc. 1990, 73 (10), 3007–3014.

5.113. Singhal, S.C. Thermodynamic analysis of the hightemperature stability of silicon nitride and silicon carbide. Ceramurg. Int. 1976, 2(3), 123–130.

5.114. Cubicciotti, D.; Lau, K.H. Kinetics of oxidation of hot-pressed silicon nitride containing magnesia. J. Am. Ceram. Soc. 1978, 61 (11–12), 512–517.

5.115. Kiehle, A.J.; Heung, L.K.; Gielisse, P.J.; Rockett, T.J. Oxidation behavior of hot-pressed Si3N4. J. Am. Ceram. Soc. 1975, 58 (1–2), 17–20.

5.116. Plucknett, K.P.; Lewis, M.H. Microstructure and oxidation behavior of HIPed silicon nitride. Ceram. Eng. Sci. Proc. 1992, 13(9–10), 991–999.

5.117. Gregory, O.J.; Richman, M.H. Thermal oxidation of sputtercoated reaction-bonded silicon nitride. J. Am. Ceram. Soc. 1984, 67 (5), 335–340.

5.118. Larsen, D.C., Adams, J.W., Johnson, L.R., Teotia, A.P.S., Hill, L.G., Eds.; Ceramic Materials Advanced Heat Engines; Noyes Publications: Park Ridge, NJ, 1985; 221.

5.119. Mieskowski, D.M.; Sanders, W.A. Oxidation of silicon nitride sintered with rare-earth oxide additions. J. Am. Ceram. Soc. 1985, 68(7), C160-C163.

5.120. Horton, R.M. Oxidation kinetics of powdered silicon nitride. J. Am. Ceram. Soc. 1969, 52 (3), 121–124.

5.121. Wang, P.S.; Hsu, S.M.; Malghan, S.G.; Wittberg, T.N. Surface oxidation kinetics of Si3N4–4%Y2O3 powders studied by Bremsstrahlung-excited auger spectroscopy. J. Mater. Sci. 1991, 26, 3249–3252.

Copyright © 2004 by Marcel Dekker, Inc.

250

Chapter 5

5.122. Franz, I.; Langheinrich, W. Formation of silicon dioxide from silicon nitride. In Reactivity of Solids: Proc. 7th International Symp. on Reactivity of Solids; Anderson, J.S., Roberts, M.W. Stone, F.S., Eds.; Hall and Chapman: London, 1972; 303– 314.

5.123. de long, R.; McCauley, R.A.; Tambuyser, P. Growth of twinned β-silicon carbide whiskers by the vapor-liquid-solid process. J. Am. Ceram. Soc. 1987, 70 (11), C338-C341.

5.124. Oliveira, F.C.; Edwards, R.A.H.; Fordham, R.J.; Riley, F.L. High temperature corrosion of Si3N4–Y2O3–Al2O3 ceramics in H2S/ H2O/H2 reducing environments. In High Temperature Corrosion of Technical Ceramics; Fordham, R.J., Ed.; Elsevier Applied Science: London, 1990; 53–68.

5.125. Singhal, S.C.; Lange, F.F. Oxidation behavior of sialons. J. Am. Ceram. Soc. 1977, 60 (3–4), 190–191.

5.126. Chartier, T.; Besson, J.L; Goursat, P. Microstructure, oxidation and creep behavior of a β’-sialon ceramic. Int. J. High Technol. Ceram. 1986, 2(1), 33–45.

5.127. Wang, X.H.; Lejus, A.-M.; Vivien, D. Oxidation behavior of lanthanide aluminum oxynitrides with magnetoplumbite-like structure. J. Am. Ceram. Soc. 1990, 73 (3), 770–774.

5.128. Suryanarayana, D. Oxidation kinetics of aluminum nitride. J. Am. Ceram. Soc. 1990, 73 (4), 1108–1110.

5.129. Abid, A.; Bensalem, R.; Sealy, B.J. The thermal stability of AlN. J. Mater. Sci. 1986, 21, 1301–1304.

5.130. Dutta, I.; Mitra, S.; Rabenberg, L. Oxidation of sintered aluminum nitride at near-ambient temperatures. J. Am. Ceram. Soc. 1992, 75(11), 3149–3153.

5.131. Katnani, A.D.; Papathomas, K.I. Kinetics and initial stages of oxidation of aluminum nitride: thermogravimetric analysis and x-ray photoelectron spectroscopy study. J. Vac. Sci. Technol. 1987, A5, 1335.

5.132. McCauley, J.W.; Corbin, N.D. Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON). J. Am. Ceram. Soc. 1979, 62 (9–10), 476–479.

5.133. Montintin, J.; Desmaison-Brut, M. Oxidation behavior of hotisostatic-pressed tantalum nitride. In High Temperature

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

251

Corrosion of Technical Ceramics; Fordham, R.J., Ed.; Elsevier Applied Science: London, 1990; 121–130.

5.134. Ervin, G. Oxidation behavior of silicon carbide. J. Am. Ceram. Soc. 1958, 41 (9), 347–352.

5.135. Jorgensen, P.J.; Wadsworth, M.E.; Cutler, I.E. Effects of water vapor on oxidation of silicon carbide. J. Am. Ceram. Soc. 1961, 44 (6), 258–260.

5.136. Harris, R.C. Oxidation of 6H-α silicon carbide platelets. J. Am. Ceram. Soc. 1975, 58 (1–2), 7–9.

5.137. Jorgensen, P.J.; Wadsworth, M.E.; Cutler, I.E. Oxidation of silicon carbide. J. Am. Ceram. Soc. 1959, 42 (12), 613–616.

5.138. Costello, J.A.; Tressler, R.E. Oxidation kinetics of hot-pressed and sintered α-SiC. J. Am. Ceram. Soc. 1981, 64 (6), 327– 331.

5.139. Singhal, S.C. Oxidation of silicon-based structural ceramics. In Properties of High Temperature Alloys with Emphasis on Environmental Effects; Foroulis, A.Z., Pettit, F.S., Eds.; Electrochem. Soc. Inc.: Princeton, NJ, 1977; 697–712.

5.140. Hinze, J.W.; Tripp, W.C.; Graham, H.C. The high temperature oxidation of hot-pressed silicon carbide. In Mass Transport Phenomena in Ceramics; Cooper, A.R., Heuer, A.H., Eds.; Plenum Press: New York, 1975.

5.141. Spear, K.E.; Tressler, R.E.; Zheng, Z.; Du, H. Oxidation of silicon carbide single crystals and CVD silicon nitride. In

Ceramic Transactions, Vol 10: Corrosion and Corrosive Degradation of Ceramics; Tressler, R.E., McNallan, M., Eds.; Am. Ceram. Soc.: Westerville, OH, 1990; 1–18.

5.142. Fergus, J.W.; Worrell, W.L. The oxidation of chemically vapor deposited silicon carbide. In Ceramic Transactions, Vol 10: Corrosion and Corrosive Degradation of Ceramics; Tressler, R.E., McNallan, M., Eds.; Am. Ceram. Soc.: Westerville, OH, 1990; 43–51.

5.143. Fox, D.S. Oxidation kinetics of CVD silicon carbide and silicon nitride. Ceram. Eng. Sci. Proc. 1992, 13 (7–8), 836– 843.

5.144. Narushima, T.; Goto, T.; Iguchi, Y.; Hirai, T. High-temperature

Copyright © 2004 by Marcel Dekker, Inc.

252

Chapter 5

active oxidation of chemically vapor-deposited silicon carbide in an Ar-O2 atmosphere. J. Am. Ceram. Soc. 1991, 74 (10), 2583–2586.

5.145. Rosner, D.E.; Allendorf, H.D. High temperature kinetics of the oxidation and nitridation of pyrolytic silicon carbide in dissociated gases. J. Phys. Chem. 1970, 74 (9), 1829–1839.

5.146. Jaskowiak, M.H.; DiCarlo, J.A. Pressure effects on the thermal stability of silicon carbide fibers. J. Am. Ceram. Soc. 1989, 72 (2), 192–197.

5.147. Wang, P.S.; Hsu, S.M.; Wittberg, T.N. Oxidation kinetics of silicon carbide whiskers studied by x-ray photoelectron spectroscopy. J. Mater. Sci. 1991, 26, 1655–1658.

5.148. Jacobson, N.S.; Eckel, A.J.; Misra, A.K.; Humphrey, D.L. Reactions of SiC with H2/H2O/Ar mixtures at 1300°C. J. Am. Ceram. Soc. 1990, 73 (8), 2330–2332.

5.149. Maeda, M.; Nakamura, K.; Yamada, M. Oxidation resistance evaluation of silicon carbide ceramics with various additives. J. Am. Ceram. Soc. 1989, 72 (3), 512–514.

5.150. Lu, W.-J.; Steckl, A.J.; Choe, T.P.; Katz, W. Thermal oxidation of sputtered silicon carbide thin films. J. Electrochem. Soc. 1984, 131 (8), 1907–1914.

5.151. Readey, D.W. Gaseous corrosion of ceramics. In Ceramic Transactions, Vol 10: Corrosion and Corrosive Degradation of Ceramics; Tressler, R.E., McNallan, M., Eds.; Am. Ceram. Soc.: Westerville, OH, 1990; 53–80.

5.152. Pareek, V.; Shores, D.A. Oxidation of silicon carbide in environments containing potassium salt vapor. J. Am. Ceram. Soc. 1991, 74 (3), 556–563.

5.153. Federer, J.I. Stress-corrosion of SiC in an oxidizing atmosphere containing NaCl. Adv. Ceram. Mater. 1988, 3 (3), 293–295.

5.154. Federer, J.I. Corrosion of SiC ceramics by Na2SO4. Adv. Ceram. Mater. 1988, 3 (1), 56–61.

5.155. Park, D.S.; McNallan, M.J.; Park, C.; Liang, W.W. Active corrosion of sintered α-silicon carbide in oxygen-chlorine gases at elevated temperatures. J. Am. Ceram. Soc. 1990, 73 (5), 1323–1329.

5.156. Stewart, R.W.; Cutler, I.E. Effect of temperature and oxygen

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

253

partial pressure on the oxidation of titanium carbide. J. Am. Ceram. Soc. 1967, 50 (4), 176–181.

5.157. Shimada, S.; Ishii, T. Oxidation kinetics of zirconium carbide at relatively low temperatures. J. Am. Ceram. Soc. 1990, 73 (10), 2804–2808.

5.158. Arun, R.; Subramanian, M.; Mehrotra, G.M. Oxidation behavior of TiC, ZrC, and HfC dispersed in oxide matrices. In Ceramic Transactions Vol 10: Corrosion and Corrosive Degradation of Ceramics; Tressler, E., McNallan, M., Eds.; Am. Ceram. Soc.: Westerville, OH, 1990; 211–223.

5.159. Markarenko, G.N. Borides of the IVb group. In Boron and Refractory Borides; Matkovich, V.I., Ed.; Springer-Verlag: New York, 1977; 310–330. Chap. 7.

5.160. Vedula, K.; Abada, A.; Williams, W.S. Potential for diboride reinforcement of oxide matrix composites. In Materials Research Society Symposium Proceedings, Vol. 125: Materials Stability and Environmental Degradation; Barkatt, A., Verink, E.D., Jr., Smith, L.R., Eds.; Mater. Res. Soc.: Pittsburgh, PA, 1988; 61–69.

5.161. Walker, J.K.; Saha, C.K. Formation of a surface carbide layer during sintering of titanium diboride. J. Am. Ceram. Soc. 1988, 71 (4), C207-C209.

5.162. Davies, M.W.; Phennah, P.J. Reactions of boron carbide and other boron compounds with carbon dioxide. J. Appl. Chem. 1959, 9(4), 213.

5.163. Fitzer, E. Oxidation of molybdenum disilicide. In Ceramic Transactions Vol 10: Corrosion and Corrosive Degradation of Ceramics; Tressler, E., McNallan, M., Eds.; Am. Ceram. Soc.: Westerville, OH, 1990; 19–41.

5.164. Berztiss, D.A.; Cerchiara, R.R.; Gulbransen, E.A.; Pettit, F.S.; Meier, G.H. Oxidation of MoSi2 and comparison with other silicide materials. Mater. Sci. Eng. 1992, A155, 165–181.

5.165. Lin, W.; Hsu, J.-Y.; Speyer, R.F. Stability of molybdenum disilicide in combustion gas environments. J. Am. Ceram. Soc. 1994, 77(5), 1162–1168.

5.166. Davison, S.; Smith, K.; Zhang, Y.-C.; Liu, J.-H.; Kershow, R.; Dwight, K.; Rieger, P.H.; Wold, A. Chemical problems

Copyright © 2004 by Marcel Dekker, Inc.

254

Chapter 5

associated with the preparation and characterization of superconducting oxides containing copper. In Chemistry of High-Temperature Superconductors; Nelson, D.L., Whittingham, M.S., George, T.F., Eds. Am. Chem. Soc.: Washington, D.C., 1987; 65–78. Chap. 7.

5.167. Yan, M.F.; Barns, R.L.; O’Bryan, H.M., Jr.; Gallagher, P.K.; Sherwood, R.C.; Jin, S. Water interaction with the superconducting YBa2Cu3O7 phase. Appl. Phys. Lett. 1987, 51 (7), 532–534.

5.168. Fitch, L.D.; Burdick, V.L. Water corrosion of YBa2Cu3O7-x superconductors. J. Am. Ceram. Soc. 1989, 72 (10), 2020– 2023.

5.169. Klinger, N.; Strauss, E.L.; Komarek, K.L. Reaction between silica and graphite. J. Am. Ceram. Soc. 1966, 49 (7), 369– 375.

5.170. Miller, P.D.; Lee, J.G.; Cutler, I.B. The reduction of silica with carbon and silicon carbide. J. Am. Ceram. Soc. 1979, 62 (3– 4), 147–149.

5.171. Martin, D.M.; Hunter, O. Jr. Polymer bonded refractories. In

The Bond in Refractories. Tenth Annual Symposium on Refractories; Staley, W., Jr., Givan, G., Eds.; Am. Ceram. Soc. Westerville, OH, 5 Apr 1974.

5.172. Williams, R.S.; Chandhury, S. Chemical compatibility of hightemperature superconductors with other materials. In

Chemistry of High-Temperature Superconductors II; Nelson, D.L., George, T.F., Eds.; Am. Chem. Soc.: Washington, DC, 1988; 291–302. Chap. 22.

5.173. Mikalsen, D.J.; Roy, R.A.; Yee, D.S.; Shivashankar, S.A.; Cuomo, J.J. Superconducting thin films of the Bi-Sr-Ca-CuO system prepared by multilayer metal deposition. J. Mater. Res. 1988, 3, (4), 613–618.

5.174. Abe, Y.; Hosono, H.; Hosoe, M.; Iwase, J.; Kubo, Y. Superconducting glass-ceramic rods in BiCaSrCu2Ox prepared by crystallization under a temperature gradient. Appl. Phys. Lett. 1988, 53(14), 1341–1342.

5.175. Ibara, Y.; Nasu, H.; Imura, T.; Osaka, Y. Preparation and crystallization process of the high-Tc superconducting phase

Copyright © 2004 by Marcel Dekker, Inc.

Corrosion of Specific Crystalline Materials

255

in Bi, Pb-Sr-Ca-Cu-O glass-ceramics. Jpn. J. Appl. Phys. 1989, 28 (1), L37-L40.

5.176. Ott, D.; Raub, C.J. The affinity of the platinum metals for refractory oxides. Platin. Met. Rev. 1976, 20 (3), 79–85.

5.177. Gutman, I.; Gutmanas, E.Y. Interaction of Si3N4 with titanium powder. J. Mater. Sci. Lett. 1990, 9, 813–815.

5.178. Yamaguchi, A. Reactions between alkaline vapors and refractories for glass tank furnace. In 10th International Congress on Glass, No. 2 Refractories and Furnaces. Ceram. Soc. Japan; 9 July, 1974; 2–1–2–8.

5.179. Mukerji, J.; Biswas, S.K. Synthesis, properties, and oxidation of alumina-titanium nitride composites. J. Am. Ceram. Soc. 1990, 73 (1), 142–145.

5.180. Borom, M.P.; Brun, M.K.; Szala, L.E. Kinetics of oxidation of carbide and silicide dispersed phases in oxide matrices. Adv. Ceram. Mater. 1988, 3 (5), 491–497.

Copyright © 2004 by Marcel Dekker, Inc.