Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ-2.doc
Скачиваний:
33
Добавлен:
24.11.2019
Размер:
11.44 Mб
Скачать

10. Неметаллические и композиционные материалы

10.1. Полимеры

Неметаллические материалы все чаще заменяют металлы. Достоинством этих материалов является сочетание необходимых химических, физических и механических свойств с низкой их стоимостью и высокой технологичностью.

В основе неметаллических материалов лежат полимеры – высокомолекулярные химические соединения с большой молекулярной массой (порядка 103), состоящие из многочисленных низкомолекулярных звеньев (мономеров) одинакового строения. В мономерах отдельные атомы соединены прочными ковалентными связями. Между макромолекулами полимеров действуют более слабые связи. Соединения с малым количеством звеньев называются олигомерами. К природным полимерам относятся: натуральный каучук, целлюлоза, слюда, асбест, шерсть и др. Наиболее распространены синтетические полимеры. Для их создания применяются следующие мономеры: этилен, винилхлорид, винилацетат, пропилен, стирол, фенол, мочевина, меламин и формальдегид. Полимеры различают по способу образования.

П олимеризация – процесс соединения низкомолекулярных соединений в высокомолекулярные с образованием длинных цепей. Например, мономеры этилена C2H4 или винилхлорида C2H3Cl после разрыва двойных ковалентных связей образуют полимерные цепи из мономерных звеньев – полиэтилен и поливинилхлорид (рис. 10.1). Полимеризацией получают полипропилен, полистирол, полибутадиен и др.

Поликонденсация – ступенчатая реакция соединения большого количества одинаковых или разных мономеров в макромолекулы (поликонденсаты) с одновременным образованием побочных продуктов (вода, аммиак, хлороводород, диоксид углерода, метиловый спирт и др.). С помощью такой реакции получают полиамиды, полиэстеры, фенопласты, аминопласты, поликарбонаты, силиконы и др.

Полиприсоединение – реакция множественного присоединения мономеров, содержащих предельные группы, к мономерам, содержащим непредельные группы (двойные связи, активные циклы). Такие реакции протекают без выделения побочных продуктов. К ним относят получение полиуретанов, процесс отверждения эпоксидных смол.

По составу полимеры делятся на органические, элементоорганические и неорганические. Органические полимеры – наиболее обширная группа соединений – состоят из атомов углерода, водорода, кислорода, азота, серы и галогенов. В состав основных цепей элементоорганических соединений входят дополнительно атомы кремния, титана, алюминия и др. Это только синтетические полимеры. Например, основные цепи кремнийорганических соединений построены из атомов кремния и кислорода. Неорганические полимеры (силикатное стекло, керамика, слюда, асбест и др.) не содержат атомов углерода. Их основой являются оксиды кремния, алюминия, магния и др.

С воеобразие свойств полимеров обусловлено их различной структурой (рис. 10.2). Полимеры с линейной структурой (например, полиэтилен) представляют собой длинные зигзагообразные или закрученные в спираль цепочки. Для цепочек характерна гибкость, что обусловливает высокую эластичность полимеров и отсутствие хрупкости в твердом состоянии. Полимеры с линейно-разветвленной структурой (полипропилен, полиизобутилен) имеют боковые ответвления. Полимеры с лестничной структурой (кремнийорганические) состоят из двух цепей, соединенных химическими связями. При соединении макромолекул полимеров между собой в поперечном направлении образуется сетчатая структура с различной густотой сетки. Такие полимеры с пространственной структурой обладают большой жесткостью и теплостойкостью и являются основой конструкционных неметаллических материалов.

Полимеры состоят из кристаллических и аморфных областей. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении макромолекул. Монокристаллы полимеров состоят из элементарных ячеек. Из них образуются более сложные структуры – ленты. Из лент строятся плоскости – основной структурный элемент кристаллического полимера. Когда образование правильных кристаллов затруднено, формируется сферолитная структура. Сферолиты состоят из лепестков, образованных последовательным чередованием кристаллических и аморфных участков. Аморфное состояние полимера характеризуется ближним порядком в расположении молекул. Аморфные полимеры по строению подобны жидкостям с большим коэффициентом вязкости. Кристаллическая фаза способствует повышению механических характеристик полимера (твердости, прочности, модуля упругости), но снижает гибкость молекул. Аморфная фаза уменьшает жесткость и делает полимер более пластичным. Отношение объема кристаллической фазы к общему объему называют степенью кристалличности.