Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линии влияния.doc
Скачиваний:
25
Добавлен:
20.11.2019
Размер:
14.82 Mб
Скачать

4.2Пример определения вертикального перемещения поперечного сечения (прогиба) балки с помощью линий влияния

Определить прогиб δс в середине пролета балки АВ при различных вариантах ее нагружения (рис. 53).

Балка имеет постоянное по ее длине сечение с моментом инерции J относительно оси изгиба, модуль упругости материала Е.

Решение.

Построение линии влияния δс.

Выберем систему координат: начало координат в точке А, ось «х» направим вправо, ось «δс» - вниз (рис. 53 в).

Необходимо рассмотреть два участка - от А до С и от С до В. Помещая единичный груз в произвольное положение поочередно на каждом участке и определяя прогиб δс, можно было бы получить уравнения линии влияния δс для каждого участка.

Однако в данном случае целесообразно воспользоваться принципом взаимности перемещений и рассматривать уравнения линии влияния на каждом участке как уравнения изогнутой оси балки на этих же участках от добавочной силы Р2=1, приложенной в рассматриваемом сечении С балки (см.п.4.1.).

Получить уравнения изогнутой оси балки для каждого участка можно путем интегрирования ее дифференциального уравнения:

±EJ·(d2δс/dx2) = M(x),

где EJ – жесткость балки; M(x) – изгибающий момент; d2δс/dx2 – вторая производная от прогиба δс.

Знак изгибающего момента М (х) не зависит от направления оси перемещений «δс», а знак второй производной зависит. Вторая производная положительна, если в сторону положительного направления оси «δс» обращена вогнутость кривой, и отрицательна, если выпуклость.

Оставим ранее принятое правило знаков для изгибающего момента – он положителен, если изгибает балку выпуклостью вверх.

Рис. 53

Рис. 54

На рис. 54 показано, что при направлении оси «δ» вниз знаки М и δ совпадают. В этом случае дифференциальное уравнение изогнутой оси балки запишется в виде:

EJδc" = M (x).

Изгибающие моменты в произвольных сечениях рассматриваемых участков (с координатами x и x1), вызванные добавочной силой Р2=1, приложенной в сечении «С», будут равны (рис. 53 в):

для левого участка М (x) = -RA·x = -b·x/ℓ;

для правого участка M (x1) = - RA·x1+(x1-a) = -b·x1/ℓ+(x1-a).

Дифференциальные уравнения для каждого участка запишутся в виде:

E·J·δc" = -b·x/ℓ, E·J·δc" = -b·x1/ℓ+(x1-a).

В результате интегрирования этих уравнений, определения постоянных интегрирования и некоторых преобразований получим уравнения изогнутой оси балки для каждого участка, которые в то же время являются уравнениями линий влияния для этих участков:

для левого участка 0 ≤ x ≤ a

δс = 1/(EJ)·[-bx3/(6ℓ)+bx/(6ℓ)·(ℓ2-b2)],

для правого участка a ≤ x ≤ ℓ

δс = 1/(EJ)·[-bx13/(6ℓ)+(x1-a)3/6+bx1/(6ℓ)·(ℓ2-b2)].

Эти уравнения являются уравнениями линии влияния прогиба в любом сечении балки, положение которого определяется отрезками «a» и «b».

Для рассматриваемого сечения «С» при a = b =ℓ/2 уравнения линии влияния δс получат вид:

для левого сечения a ≤ x ≤ ℓ/2

δс = 1/(48EJ)·(3ℓ2x-4x3),

для правого сечения ℓ/2 ≤ x ≤ ℓ

δс = 1/(48EJ)·[8(x1-ℓ/2)3- 4x13 +3ℓ2 x1].

Линия влияния δс изображена на рис. 53 б.

Определение прогиба δс.

Для определения прогиба δс линию влияния δс строить не нужно. Необходимые ординаты и площади линии влияния под погонной нагрузкой следует определять по ее уравнениям.

а) При первом варианте нагружения прогиб δс = P·δ2.

Ордината δ2 находится по уравнению линии влияния для любого участка:

δ2 = ℓ3/(48EJ).

Следовательно, δс = Pℓ3/(48EJ).

б) При втором варианте нагружения прогиб δс = q·w,

где w – площадь всей линии влияния.

Линия влияния симметрична относительно сечения «С». Поэтому, воспользовавшись уравнением для левого участка, получим:

ℓ/2

w = 2∫ [1/(48EJ)·(3ℓ2x-4x3)]dx = 5ℓ4/(384EJ).

0

Следовательно, δс =5qℓ4/(384EJ) = 0,625Pℓ3/(48EJ).

в) При третьем варианте нагружения прогиб

δс = P1·δ1+ P2·δ3+q·w1 = P·(δ1+ δ3)+q·w1,

где w1 – площадь левой половины линии влияния, расположенная под погонной нагрузкой.

Воспользовавшись первым уравнением линии влияния δс для определения δ1 при x = 0,25ℓ и вторым уравнением для определения δ3 при x = 0,6ℓ, получим:

δ1 = 0,6875ℓ3/(48EJ), δ3 = 0,944ℓ3/(48EJ).

Используя первое уравнение линии влияния δс, получим:

ℓ/2

w1 = ∫ [1/(48EJ)·(3ℓ2x-4x3)]dx = 5ℓ4/(768EJ).

0

q·w1 = 0,3125Pℓ3/(48EJ).

Следовательно, δс = Pℓ3/(48EJ)·(0,6875+0,944+0,3125) = 1,944Pℓ3/(48EJ).