Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Differentsialnye_uravnenia_lektsii.docx
Скачиваний:
2
Добавлен:
14.08.2019
Размер:
863.87 Кб
Скачать

Системы обыкновенных дифференциальных уравнений

Рассмотрим систему уравнений первого порядка

( 1 )

где искомые функции, аргумент.

Такая система, когда в левой части уравнений стоят производные первого порядка, а правые части не содержат производных, называется нормальной.

Решить систему – значит определить функции , удовлетворяющие системе уравнений (1) и данным начальным условиям:

( 2 )

Интегрирование системы (1) производится следующим образом.

Дифференцируем по первое из уравнений (1):

Заменяя производные их выражениями из уравнений (1), будем иметь уравнение

.

Дифференцируя полученное уравнение и поступая аналогично предыдущему, получим:

.

Продолжая далее, таким же образом получим, наконец, уравнение

.

Итак, получим следующую систему:

( 3 )

Из первых уравнений определим выразив их через и производные :

( 4 )

Подставляя эти выражения в последнее из уравнений (3), получим уравнение порядка для определения :

. ( 5 )

Решая уравнение (5), определим :

( 6 )

Дифференцируя выражение (6) раз, найдём производные

как функции от . Подставляя эти функции в (4), получим :

( 7 )

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Пусть дана система дифференциальных уравнений

( 1 )

где постоянные, аргумент, искомые функции, . Система (1) называется системой линейных однородных дифференциальных уравнений с постоянными коэффициентами.

Эту систему можно решать путём сведения к одному уравнению го порядка, которое в данном случае будет линейным. Но можно решать систему (1) и другим методом, не сводя к уравнению го порядка. Этот метод даёт возможность более наглядно анализировать характер решений.

Будем искать решение системы в виде:

( 2 )

Надо определить постоянные и так, чтобы функции удовлетворяли системе уравнений (1), т.е.

Сократив на , перенеся все члены в одну сторону и собрав коэффициенты при , получим систему уравнений

( 3 )

Выберем и такими, чтобы удовлетворялась система (3). Эта система есть система линейных однородных алгебраических уравнений относительно . Из курса линейной алгебры следует, что она будет иметь нетривиальное решение, если

( 4 )

Это уравнение называется характеристическим уравнением для системы (1), его корни называются корнями характеристического уравнения.

В качестве примера рассмотрим случай, когда корни характеристического уравнения - действительные и различные.

Для каждого корня напишем систему уравнений (3) и определим коэффициенты

.

Можно показать, что один из них произвольный, его можно считать равным единице. Таким образом, получаем:

для корня решение системы (1)

для корня решение системы (1)

для корня решение системы (1)

.

Путём непосредственной подстановки в уравнения можно убедиться, что система функций

( 5 )

где произвольные постоянные, тоже является решением системы дифференциальных уравнений (1). Это есть общее решение системы (1)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]