Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_matematika_2_kurs_1.doc
Скачиваний:
38
Добавлен:
25.04.2019
Размер:
1.8 Mб
Скачать

4. Признаки Даламбера и Коши

Теорема. (Признак Даламбера) Пусть дан знакоположительный числовой ряд (7)

и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.

Доказательство. По условию существует предел . Это означает, что для любого положительного числа Е существует такой номер N, что для всех номеров n³N выполняется условие или p-E< (10)

Пусть сначала p<1. Выберем Е так, что p+E=q<1. Для всех n³N имеем … или

или (11)

Рассмотрим ряды (12) . (13)

Ряд (13) сходится, так как он является бесконечно убывающей геометрической прогрессией. Тогда ряд (12) сходится, учитывая (11), по признаку сравнения. Ряд (7) сходится по теореме 1.

Пусть теперь p>1. Выберем Е так, что p-E>1. Тогда из левой части неравенства (10) следует, что при n³N выполняется или un+1>un, то есть члены ряда возрастают с возрастанием номера n. Поэтому un¹0, следовательно, ряд расходится по следствию из необходимого признака сходимости. Теорема доказана.

Замечания.

1. Если расходимость ряда установлена с помощью признака Даламбера, то un¹0.

2. При р=1 признак Даламбера не даёт ответа о сходимости ряда. В этом случае нужно применять другие признаки сходимости.

3. Признак Даламбера рекомендуется применять при наличии в выражении общего члена ряда показательной функции или факториала.

Пример.

Исследовать на сходимость ряд Применим признак Даламбера. un= un+1= . следовательно, ряд сходится по признаку Даламбера.

Теорема (Признак Коши)

Пусть дан знакоположительный числовой ряд u1+u2+…+un (7)

и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.

Доказательство. По условию существует Это означает, что для любого положительного числа Е существует такой номер N, что для всех n³N выполняется условие | | <E или p-E< <p+E. (14)

Пусть p<1. Выберем Е таким, чтобы выполнялось p+E=q<1. Тогда из (14) получаем <q или un<qn для всех n³N. Рассмотрим ряды (15) (16)

Ряд (16) сходится, так как он является бесконечно убывающей геометрической прогрессией. Ряд (15) сходится, учитывая, что un<qn для всех n³N, по признаку сравнения, следовательно, по теореме 1 сходится ряд (7).

Пусть теперь p>1. Выберем Е так, чтобы выполнялось условие p-E >1. Тогда из (14) получаем >1 или un>1, следовательно, un¹0 и ряд (7) расходится по следствию из необходимого признака сходимости. Теорема доказана.

5. Интегральный признак сходимости

Теорема . (Интегральный признак Коши)

Пусть члены знакоположительного числового ряда u1+u2+…+un (7) не возрастают: u1³u2≥…≥un≥… и пусть f(x) такая положительная, непрерывная, невозрастающая на промежутке [1;∞) функция, что f(1)=u1, f(2)= u2 ,…, f(n)= =un,… . Тогда ряд (7) сходится или расходится одновременно с несобственным интегралом

Доказательство. Построим график функции y=f(x) на отрезке [1;n] и построим прямоугольник с основаниями [1;2], [2;3], …, [n-1;n] и высотами u1,u2,…,un-1, а также с высотами u2,u3,…,un.

Sn=u1+u2+…+un-1+un, Sвпис=u2.1+u3.1+…+un.1=u2+u3+…+un=Sn-u1,

Sопис=u1+u2+…+ +un-1=Sn-un.

Площадь криволинейной трапеции S= . Получаем Sn-u1< < Sn-un. Отсюда Sn<u1+ (17)

и Sn>un+ (18)

Пусть сходится. Это означает, что существует конечный предел =Y. Соотношение (17) принимает вид: Sn<u1+Y при любом n. Это означает, что последовательность частичных сумм Sn ряда (7) ограничена и, следовательно, ряд (7) сходится. Пусть расходится. Это означает, что = и тогда из (18) следует, что последовательность частичных сумм Sn ряда (7) неограничена и, следовательно, ряд (7) расходится. Теорема доказана.

 

Пример.

Исследуем с помощью интегрального признака Коши обобщённый гармонический ряд

Очевидно, f(x)= . При к≠1 имеем =

При к=1 имеем

Таким образом, обобщённый гармонический ряд сходится при k>1 и расходится при k≤1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]