Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ_1.doc
Скачиваний:
27
Добавлен:
22.04.2019
Размер:
4.27 Mб
Скачать

Вопрос№56_2

Собственно база данных и приложения. И, наконец, как результат предыдущих этапов появляется собственно сама база данных. База данных реализована на конкретной программно-аппаратной основе, и выбор этой основы позволяет существенно повысить скорость работы с базой данных. Очень большое значение имеет также настройка СУБД в пределах выбранной программно-аппаратной платформы.

Но опять решения, принятые на предыдущем уровне - уровне физического проектирования, определяют границы, в пределах которых можно принимать решения по выбору программно-аппаратной платформы и настройки СУБД.

Таким образом ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования.

Ключевые решения, определяющие качество будущей базы данных закладываются на этапе разработки логической модели данных. "Хорошие" модели данных должны удовлетворять определенным критериям:

  • Адекватность базы данных предметной области

  • Легкость разработки и сопровождения базы данных

  • Скорость выполнения операций обновления данных (вставка, обновление, удаление)

  • Скорость выполнения операций выборки данных

Первая нормальная форма (1НФ) - это обычное отношение. Отношение в 1НФ обладает следующими свойствами:

  • В отношении нет одинаковых кортежей.

  • Кортежи не упорядочены.

  • Атрибуты не упорядочены.

  • Все значения атрибутов атомарны.

Отношения, находящиеся в 1НФ являются "плохими" в том смысле, что они не удовлетворяют выбранным критериям - имеется большое количество аномалий обновления, для поддержания целостности базы данных требуется разработка сложных триггеров.

Отношение находится во второй нормальной форме (2НФ) тогда и только тогда, когда отношение находится в 1НФ и нет неключевых атрибутов, зависящих от части сложного ключа.

Отношения в 2НФ "лучше", чем в 1НФ, но еще недостаточно "хороши" - остается часть аномалий обновления, по-прежнему требуются триггеры, поддерживающие целостность базы данных.

Отношение находится в третьей нормальной форме (3НФ) тогда и только тогда, когда отношение находится в 2НФ и все неключевые атрибуты взаимно независимы.

Отношения в 3НФ являются самыми "хорошими" с точки зрения выбранных нами критериев - устранены аномалии обновления, требуются только стандартные триггеры для поддержания ссылочной целостности.

Переход от ненормализованных отношений к отношениям в 3НФ может быть выполнен при помощи алгоритма нормализации. Алгоритм нормализации заключается в последовательной декомпозиции отношений для устранения функциональных зависимостей атрибутов от части сложного ключа (приведение к 2НФ) и устранения функциональных зависимостей неключевых атрибутов друг от друга (приведение к 3НФ).

Вопрос№57 Классическое определение вероятности. Условная вероятность, независимые события, теоремы сложения и умножения.

Рассмотрим некоторый опыт с конечным числом n взаимоисключающих друг друга исходов, которые равновозможны. Пусть А – некоторое событие, связанное с этими исходами. Вероятность p(А) можно определить как долю тех исходов, в результате которых это событие осуществляется: P(A) = n(A)/n, где n – число всех исходов, n(A) – число исходов, в результате которых осуществляется событие А (благоприятных).

Пусть задано вероятностное пространство <Ω,F,Р> и пусть А и В – произвольные события. Если Р(В)>0, то условная вероятность события А при условии, что произошло событие В, по определению полагается равной Р(А|В)=Р(АВ)/Р(В). События А и В называется независимыми, если Р(АВ) = Р(А)Р(В). т. е. вероятность совмещения двух независимых событий равна произведению вероятностей этих событий.

Свойства независимых событий.

1. Если А и В независимы, то независимы А и В¯, А¯ и В, А¯ и В¯.

2. Если А и В независимы, А и С независимы, ВС = 0, то независимы А и В+С.

Теорема сложения для n событий. Для любых событий А1…Аn

P(⋃(i=1,n)Ai)=∑(i=1,n)p(Ai) - ∑(1≤i<j≤n)p(AiAj) + ∑(1≤i<j<k≤n)p(AiAjAk) - …+ (-1)^(n-1)p(A1…An).

   Теорема умножения. Вероятность совмещения событий А и В равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие осуществилось, т. е.

P(AB)=P(A)PA(B)

(4)

   Доказательство. Докажем справедливость соотношения (4), опираясь на классическое определение вероятности. Пусть возможные исходы Е1, Е2, ..., ЕN данного опыта образуют полную группу равновероятных попарно несовместных событий, из которых событию A благоприятствуют M исходов, и пусть из этих M исходов L исходов благоприятствуют событию B. Очевидно, что совмещению событий A и B благоприятствуют L из N возможных результатов испытания. Это дает

; ;    Таким образом,

   Поменяв местами A и B, аналогично получим

(5)

   Из формул (4) и (5) имеем

(6)

   Теорема умножения легко обобщается на любое , конечное число событий. Так, например, в случае трех событий A1, A2, A3 имеем *

   В общем случае

(7)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]