Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первые вопросы.docx
Скачиваний:
4
Добавлен:
18.04.2019
Размер:
216.78 Кб
Скачать

14 Билет. Естественно - научные основы лазерных технологий.Особенности лазерного излучения. Применение.

Лазерное излучение используется во многих областях человеческой деятельности: машиност­роении, сельском хозяйстве, медицине, связи, для обработки и хранения информации, измерения расстояний, времени и скорости, в научных иссле­дованиях. Разные области применения налагают специфические для этой области требования к лазе­рам: для сварки, резки и сверления металлов необ­ходимы мощные лазеры непрерывного действия, а для исследования быстропротекающих процессов -лазеры, излучающие очень короткие, но энергичные импульсы, и т.д. В частности, для связи и обработки информации желательно иметь миниатюрные, но довольно мощные импульсные или непрерывные лазеры. Для этого используют твердотельные лазе­ры с высокоэффективными (то есть с большим КПД) активными элементами. Наиболее распространенным классическим ла­зером, излучающим в ближней инфракрасной обла­сти спектра (1,06 мкм), является лазер на иттрий-алюминиевом гранате с неодимом. Рабочими части­цами в нем являются ионы неодима Nd3+, и лазер ра­ботает по так называемой четырехуровневой схеме. Кристаллы иттрий-алюминиевого граната Y3Al5O12 : Nd3+ обладают исключительным набором свойств, делающим их весьма подходящим материа­лом для твердотельных лазеров. Они прозрачны в очень широкой спектральной области (0,2—5 мкм). механически прочны, обладают высокой лучевой устойчивостью, а по теплопроводности уступают незначительно только корунду А12О3, теплопровод­ность которого приблизительно такая же, как у меди. Кристаллическая структура иттрий-алюминиевого граната (ИАГ) допускает введение значительных концентраций ионов Nd3+. В настоящее время тех­нология выращивания монокристаллов ИАГ хоро­шо разработана. Лазер на ИАГ имеет низкий порог генерации. Таким образом, казалось, что этот мате­риал идеально подходит для создания высокоэф­фективных лазеров. Однако выяснилось, что из-за так называемого концентрационного тушения лю­минесценции он не может быть использован для миниатюрных высокоэффективных лазеров. Чтобы понять, в чем дело, придется рассмотреть те процес­сы и явления, которые происходят в кристаллах, со­держащих примеси ионов редкоземельных элемен­тов, к которым принадлежит ИАГ: Nd3+.

Применение лазеров.

Лазерное сопровождение музыкальных представлений. В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту. В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов.) Лазеры используются для получения поверхностных покрытий. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов. кроме того, весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью. Лазеры применяются в голографии для создания самих голограмм и получения гологафического объёмного изображения. С использованием лазера удалось измерить расстояние до Луны с точностью до нескольких сантиметров. Применение лазеров в метрологии и измерительной технике не ограничивается измерением расстояний. Лазеры находят здесь разнообразнейшее применение: для измерения времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.Сверхкороткие импульсы лазерного излучения используются в лазерной химии для запуска и анализа химических реакций. В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии.

Особенности лазерного излучения

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего” усиление света в результате вынужденного излучения” .

Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы) В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

Существует, однако, и другой вариант получения лазерного луча, связанный с использованием системы обратной связи. Спонтанно родившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создадут лавины фотонов, выходящие за пределы среды. В то же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут лавины, многократно усиливающиеся в среде вследствие многократного отражения от зеркал. Если одно из зеркал будет обладать небольшим пропусканием, то через него будет выходить направленный поток фотонов перпендикулярно плоскости зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга и относительно продольной оси среды с инверсной населенностью обратная связь может оказаться настолько эффективной, что излучением “вбок” можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используют в большинстве существующих лазеров.