Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первые вопросы.docx
Скачиваний:
4
Добавлен:
18.04.2019
Размер:
216.78 Кб
Скачать

11 Билет Основные представления современной химии. Эволюционная химия. Синтез новых материалов

Необходимость повышения производительности труда и эффективности производства, роста темпов добычи и переработки громадного объема минеральных ресурсов, наряду с необходимостью решения многих жизненно важных проблем вызвали к жизни использование химической технологии, всеобщую химизацию, а затем и компьютеризацию общественного производства и быта. Успехи человека в решении больших и малых проблем выживания в значительной мере были достигнуты благодаря развитию химии, становлению различных химических технологий. Химическая промышленность производит десятки тысяч наименований продуктов, многие из которых по технологическим и экономическим характеристикам успешно конкурируют с традиционными материалами, а часть — являются уникальными по своим параметрам. Химия дает материалы с заранее заданными свойствами, в том числе и такими, которые не встречаются в природе. Подобные материалы позволяют проводить технологические процессы с большими скоростями, температурами, давлениями, в условиях агрессивных сред. Для промышленности химия поставляет такие продукты, как кислоты и щелочи, краски, синтетические волокна и т. п. Для сельского хозяйства химическая промышленность выпускает минеральные удобрения, средства защиты от вредителей, химические добавки и консерванты к кормам для животных. Для домашнего хозяйства и быта химия поставляет моющие средства, краски, аэрозоли и другие продукты. Химия характерна не только тем, что обеспечивает производство многих необходимых продуктов, материалов, лекарств. Во многих отраслях промышленности и сельскохозяйственного производства широко используются также химические методы обработки: беление, крашение, печатание в текстильной промышленности; обезжиривание, травление, цианирование в машиностроении; кислородное дутье в металлургии; консервация, синтезирование витаминов и аминокислот — в пищевой и фармацевтической промышленности и т. д. Внедрение химических методов ведет к интенсификации технологических процессов, увеличению выхода полезного вещества, снижению отходов, повышению качества продукции. Таким образом, химизация, как процесс внедрения химических методов в общественное производство и быт, позволила человеку решить многие технические, экономические и социальные проблемы. Однако масштабность, а нередко и неуправляемость этого процесса обернулась «второй стороной медали». Химия прямо или опосредованно затронула практически все компоненты окружающей среды — сушу, атмосферу, воду Мирового океана, внедрилась в природные круговороты веществ. В результате этого нарушилось сложившееся в течение миллионов лет равновесие природных процессов на планете, химизация стала заметно отражаться на здоровье самого человека. Получилась ситуация, которую ученые обоснованно именуют химической войной против населения Земли. За последние 30-40 лет в этой войне пострадали сотни миллионов жителей планеты. Возникла самостоятельная ветвь экологической науки — химическая экология. Новые технологии по своим параметрам должны приближаться к природным процессам, отличаться от промышленных своей безотходностью или малоотходностью. В безотходном производстве технологический цикл «сырье — производство — использование готового продукта — вторичное сырье» вписывается в окружающую среду, не нарушая экономического развития. В настоящее время наметились следующие пути решения сложных экологических проблем: комплексная переработка сырья; пересмотр традиционных процессов и схем получения известных продуктов; внедрение бессточных и замкнутых схем водопотребления; очистка выбрасываемых газов; использование промышленных комплексов с замкнутой структурой материальных и энергетических потоков. Из сказанного вытекает, что место и роль химии в современной цивилизации должны рассматриваться системно, т. е. во всем многообразии отношений, существующих между обществом и природной средой в рамках критерия экологической безопасности. При этом неизбежно рассмотрение химии как активного элемента сложной системы «общество — природа», представляющего собой, в свою очередь, открытую систему со своей структурой и взаимообменом между веществом, энергией и информацией.

Эволюционная химия — четвертая концептуальная система химии, связанная с включением в химическую науку принципа историзма и понятия времени, с построением теории химической эволюции материи. Эволюционная химия изучает процессы самоорганизации вещества: от атомов и простейших молекул до живых организмов.

Одним из первых открытий, которые относят к эволюционной химии, является эффект самосовершенствования катализаторов в реакциях, исследованный в работах американских химиков А. Гуотми и Р. Каннингем в 1958—1960 гг. В 1964—1969 гг. советский химик А. П. Руденко, учитывая это открытие, создал теорию саморазвития открытых каталитических систем. В работах немецкого химика М.Эйген была развита теория гиперциклов, объясняющая объединение самовоспроизводящихся макромолекул в замкнутые автокаталитические химические циклы. Теория гиперциклов является абиогенетической теорией химической эволюции и происхождения жизни. В 1987 году Нобелевский лауреат Жан-Мари Лен, основатель супрамолекулярной химии, ввёл понятие супрамолекулярной самоорганизации и самосборки для описания явлений упорядочения в системах высокомолекулярных соединений. Супрамолекулярной самосборкой является процесс спонтанной ассоциации двух и более компонентов, приводящий к образованию супермолекул или полимолекулярных ансамблей, происходящий за счет нековалентных взаимодействий. Это процесс был описан при изучении спонтанного образования неорганических комплексов (двойных геликатов), протекающего как процесс самосборки. Наиболее известным проявлением самосборки в живой природе является самосборка молекул нуклеиновых кислот, матричный синтез белков.

Синтез новых материалов

Современную материально-техническую базу производства примерно на 90% составляют всего лишь два вида материалов: металлы и керамика. Однако изготовление металла обходится в сотни и тысячи раз дороже, чем изготовление керамики. И это различие в экономике производства двух видов основных материалов до недавнего времени никого особенно не волновало, потому что каждый из них имел свое строго определенное хозяйственное назначение. Металл оставался материальной основой машиностроения, железных дорог, линий электропередач, производства специальных трубопроводов и емкостей. А керамика служила основой строительства зданий, производства посуды и домашней утвари, тепло- и электроизоляторов. Но теперь все больше открывается возможностей замены металла керамикой по двум причинам: производство керамики намного легче в техническом отношении и выгоднее экономически, и, главное, керамика во многих случаях оказывается более подходящим конструкционным материалом по сравнению с металлом.

Преимущества керамики состоят в том, что ее плотность в среднем на 40% ниже плотности металла, и это позволяет снизить массу изготавливаемых из нее деталей машин. С применением новых химических элементов - циркония, титана, бора, германия, хрома, молибдена, вольфрама и т.д. в последнее время синтезируют огнеупорную, термостойкую, химостойкую, высокотвердую керамику, а также керамику с набором заданных электрофизических свойств.

В нашей стране впервые в мире в 1960-х годах получен сверхтвердый материал - гексанит-Р как одна из кристаллических разновидностей нитрида бора, на основе бора и азота может быть получено химическое соединение простейшего состава с температурой плавления свыше 3200°С и твердостью, близкой к твердости алмаза. Кроме того, этот материал обладает рекордно высокой вязкостью, т. е. он не так хрупок, как все другие керамические материалы. Решена, таким образом, одна из труднейших научно-технических проблем века: до сих пор всей конструкционной керамике был присущ общий недостаток - хрупкость, теперь же сделан шаг к его преодолению.

Большое преимущество технической керамики нового состава в том, что детали машин из нее производятся прессованием порошков с получением готовых изделий заданных форм и размеров. Это исключает токарную обработку заготовки, сверление, фрезерование, на что приходится до двух третей трудовых затрат в машиностроении и одной трети потерь металла в отходах.

И, наконец, сегодня можно назвать еще одно уникальное свойство керамики - сверхпроводимость при температурах выше температуры кипения азота. Открытие этого свойства керамики произошло благодаря применению для ее производства таких новых для нее химических элементов, как барий, лантан и медь, взятых в едином комплексе. Само по себе это открытие вызвало сенсацию в мире науки и техники.

Сравнительно недавно - в 1992 г. получен материал, обладающий сверхпроводящими свойствами уже при 170К. Это означает, что сверхпроводимость в новом материале возникает уже при охлаждении его не жидким азотом, а жидким ксеноном. Данный материал состоит из слоев окиси меди, стронция и кальция, т. е. имеет сравнительно простую структуру.

Важнейшей социально значимой областью применения новых материалов является медицина, которая требует новых материалов для медицинского инструмента, оборудования и протезирования. Особенно высоки требования к материалам для эндопртезирования. Это прежде всего биосовместимость (биоинертность, биоактивность), высокий уровень физико-механических характеристик, стабильность свойств, долговечность работы в человеческом организме. Как показала клиническая практика, применение имплантатов из биоинертных углеродных материалов сокращает в 2–2,5 раза сроки послеоперационной реабилитации и исключает повторные операции.

В России разработаны и внедрены в клиническую практику различные химические материалы и изделия нового поколения, в качестве примеров можно упомянуть следующие:

 имплантаты для замены костей свода черепа;

– имплантаты культи глаза из углеродного войлока;

– элементы для замещения межпозвоночного промежутка и элементов коленного сустава;

– однополюсные тазобедренные суставы из углеродных материалов; травматические противоожоговые повязки из углеродной ткани.

В настоящее время ведутся работы по созданию третьего поколения искусственного клапана сердца из углеситалла, механические характеристики которого обеспечат его работоспособность в организме человека в продолжении 80 лет.

Развитие работ в области синтеза и изучения строения биокерамических материалов на основе гидроксиапатита привело к созданию новых биологически активных материалов. Эти материалы абсолютно совместимы с тканями организма человека, не отторгаются организмом и стимулируют рост костной ткани. Их применение приведет к принципиальным изменениям ситуации в реконструктивно-восстановительной хирургии, стоматологии и травматологии.

Нашим ученым принадлежит приоритет в области сверхпроводящих материалов. Сейчас в России выпускаются высокотемпературные сверхпроводники длинами 200 м и более. Идет проработка проекта создания кабелей на таких сверхпроводниках для передачи электроэнергии из Дальневосточного региона в Японию. Ведутся работы по созданию нового класса высокопрочных и высоко–электропроводных проводников на основе Cu–Nb с нанометрическим уровнем микроструктуры.