Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_dlya_zaochnikov (2).doc
Скачиваний:
11
Добавлен:
22.03.2016
Размер:
792.58 Кб
Скачать

2.1) Отделение корней.

Всякое значение λ, обращающее функцию f(x) в нуль, т. е. такое, что f(λ) = 0, называется корнем уравнения (1) или нулём функции f(x).

Отделить корни − это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень. Отделение корней можно произвести двумя способами − графическим и аналитическим.

Графический метод отделения корней: a) строят график функции у = f(x) для уравнения вида f(x) = 0. Значения действительных корней уравнения являются абсциссы точек пересечения графика функции у = f(x) с осью Ох (рис.1);

b) представляют уравнение (1) в виде φ(х) = g(x) и строят графики функций

у = φ(х) и у = g(x). Значения действительных корней уравнения являются абсциссы точек пересечения графиков функций у = φ(х) и у = g(x) (рис.2).

Отрезки, в которых заключено только по одному корню, легко находятся.

Рис.1. Рис.2.

Аналитический метод отделения корнейоснован на следующейтеореме:

если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, т.е. , то внутри этого отрезка находится хотя бы один корень уравнения; если при этом

производная сохраняет знак внутри отрезка , то корень является единственным.

Уточнение корней до заданной точности.

То есть сужение отрезка локализации корня [a,b]. Рассмотрим несколько методов.

1) Метод половинного деления (дихотомии).

Пусть корень отделён и принадлежит отрезку . Находим середину отрезка по формуле (рис.3). Если , то с – искомый корень.

Если , то в качестве нового отрезка изоляции корнявыбираем ту половинуили, на концах которойпринимает значения разных знаков. Другими словами, если, то корень принадлежит отрезку, если- отрезку. Полученный отрезок снова делим пополам, находим ,

Рис. 3.

Рис.3

Вычисляем , выбираем отрезок и т.д. Как только будет выполнено , то в качестве приближенного значения корня, вычисленного с точностью , можно взять .

После каждой итерации отрезок, на котором расположен корень уменьшается вдвое, то есть после nитераций он сокращается в 2nраз. Таким образом, число итерацийnв данном методе зависит от предварительно заданной точности ε и от длины исходного отрезка и не зависит от вида функцииf(x). Это является важным преимуществом метода половинного деления по сравнению с другими методами. Метод, однако, медленно сходится при задании высокой точности расчёта.

2) Метод хорд.

Пусть на отрезке [a,b] функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производные f ′(x) и f ″(x) сохраняют постоянный знак на интервале (a,b). Тогда возможны четыре случая расположения дуги кривой (рис.4).

Рис.4.

В методе хорд за очередное приближение берём точку пересечения с осью Х прямой (рис.5), соединяющей точки (a,f(a)) и (b,f(b))

Причём одна из этих точек фиксируется − та, для которой знаки f(x) и f ″(x) одинаковы.

Для рис.5 неподвижным концом хорды является х =a.

Уравнение хорды АВ:

Точка пересечения хорды с осью Х (у=0): .

Теперь корень находится на отрезке [a,c1]. Заменяем b на с1.

Рис.5. Иллюстрация метода хорд.

Применяя метод хорд к этому отрезку, получим:

.

Продолжим и т.д., получим: (2) Условие окончания вычислений:

│сn+1 − cn│< ε или │f(cn)│< ε1.

Для оценки погрешности можно пользоваться общей формулой:

, где

Итак, если f (x)∙f″(x) > 0, то приближённое значение корня находят по формуле (2), если f′(x)∙f″(x) < 0 (т.е. фиксируется х = b), то по формуле:

. (3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]