Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторные работы по БЖД final.docx
Скачиваний:
20
Добавлен:
20.11.2019
Размер:
11.28 Mб
Скачать

Библиографический список

  1. Лабораторный практикум по дисциплине «Безопасность жизнедеятельности» для студентов всех специальностей: учебное пособие. Ю.А. Амелькович, Ю.В. Анищенко, А.Н. Вторушина, М.В. Гуляев, М.Э. Гусельников, А.Г. Дашковский, Т.А. Задорожная, В.Н. Извеков, А.Г. Кагиров, К.М. Костырев, В.Ф. Панин, А.М. Плахов, С.В. Романенко – Томск: Издательство Томского политехнического университета, 2010. – 236 с.

  2. Еремина Т.В., Гусева Н.И., Перевалова О.А., Тимофеева И.Г. Безопасность жизнедеятельности: Учебное пособие. Ч. 1. – Улан-Удэ: Изд-во ВСГТУ, 2003. – 272 с.

  3. Белов С.В. Безопасность жизнедеятельности и защита окружающей среды (техносферная безопасность) : учебник / С.В.Белов. – 2-е изд., испр. и доп. – М. : Издательство Юрайт; ИД Юрайт, 2011. – 680с.

  4. Русак О.Н., Малаян К.Р., Занько Н.Г. Безопасность жизнедеятельности : учеб. пособие. 9-е изд., стер. / под ред. О. Н. Русака. – СПб. : Изд-во «Лань», М.: ООО Изд-во «Омега - Л», 2005. – 448 с.

  5. Учебно-методический комплекс по дисциплине «Безопасность жизнедеятельности». Электронный ресурс. Режим доступа: http://bgd.alpud.ru/bgd_.htm#deistvie_shum

  6. Гост 12.1.003-83. «ССБТ. Шум. Общие требования безопасности». Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 06.06.83 г. № 2473.

  7. СНиП 23-03-2003 «Защита от шума». Приняты и введены в действие Постановлением Госстроя России от 30 июня 2003 г. № 136.

  8. СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой, застройки». Утверждены и введены в действие постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. № 36.

  9. Безопасность жизнедеятельности: учебное пособие по выполнению лабораторных работ для студентов всех специальностей, направлений и форм обучения / А.Г. Лапкаев [и др.]; под общ. ред. А.Г. Лапкаева. – Изд. 4-е испр. и доп. – Красноярск: СибГТУ, 2006. – 212 с.

Тема 2. Защита от теплового излучения

Основные теоретические положения

Физическая характеристика теплового излучения

Лучистый теплообмен между телами представляет собой процесс распространения внутренней энергии, которая излучается в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра.

Тепловое излучение (инфракрасное излучение (ИКИ)) представляет собой невидимое электромагнитное излучение с длиной волны от 0,76 до 420 мкм, обладающее волновыми и световыми свойствами. Длина волны видимого излучения – от 0,38 до 0,76 мкм [11].

По длине волны инфракрасные лучи делятся на коротковолновую ИКИ-А (менее 1,4 мкм), средневолновую ИКИ-В (1,4 – 3 мкм), длинноволновую ИКИ-С (3 мкм – 1 мм) область [1].

Основные законы физики инфракрасного излучения.

Закон Кирхгофа: лучеиспускание обуславливается только состоянием излучающего тела и не зависит от окружающей среды. Лучеиспускательная способность любого тела пропорциональна его лучепоглощающей способности. Тело, поглощающее все падающие на него лучи (абсолютно черное тело), обладает максимальным излучением. На этом законе основано применение поглощающей защитной одежды, светофильтров, окраска оборудования, устройство приборов для измерения теплового излучения.

Закон Стефана-Больцмана: с повышением температуры излучающего тела мощность излучения увеличивается пропорционально 4-й степени его абсолютной температуры:

(1)

где Е – мощность излучения, Вт/м2; σ – постоянная Стефана-Больцмана, равная 5,67032·10-8 Вт∙м-2∙К-4; Т – абсолютная температура, К.

В соответствии с этим законом даже небольшое повышение температуры тела приводит к значительному росту отдачи тепла излучением. Используя этот закон можно определить величину теплообмена излучением в производственных условиях.

Количество тепловой энергии, передаваемое излучением, определяется законом Стефана-Больцмана по формуле:

(2)

где Е – теплоотдача, Вт/м; С1 и С2 - константы излучения с поверхностей; σ –постоянная Стефана-Больцмана; Т1 и Т2 – температуры поверхностей, К; между которыми происходит теплообмен излучением.

При расчете теплоотдачи излучением учитывают температуру стен и других поглощающих тепловую радиацию поверхностей (среднерадиационная температура).

Закон Вина: произведение абсолютной температуры излучающего тела на длину волны излучения (λмакс) с максимальной энергией – величина постоянная

(3)

где: С=2880; Т – абсолютная температура, К; λ – длина волны в мкм.

Исходя из закона Вина, длина волны максимального излучения нагретого тела обратно пропорциональна его абсолютной температуре:

(4)

Основная физическая характеристика инфракрасного излучения – интенсивность теплового излучения может быть определена по формуле:

(5)

где Q интенсивность теплового излучения, Вт/м2; F – площадь излучающей поверхности, м2; T0 – температура излучающей поверхности, К; l – расстояние от излучающей поверхности, м.

Из формулы (5) следует, что количество лучистого тепла, поглощаемого телом человека, зависит от температуры источника излучения, площади излучающей поверхности и квадрата расстояния между излучающей поверхностью и телом человека [9].

Биологическое действие теплового излучения

Тепловой обмен организма человека с окружающей средой заключается во взаимосвязи между образованием тепла (термогенезом) в результате жизнедеятельности организма и отдачей им этого тепла во внешнюю среду. Отдача тепла осуществляется, в основном, тремя способами: конвекцией, излучением и испарением [2].

Передача тепла ИК-излучением является наиболее эффективным способом теплоотдачи и составляет в комфортных метеоусловиях 44-59 % общей теплоотдачи. Тело человека излучает в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны 9,4 мкм.

В производственных условиях, когда работающий человек окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Отдача человеческим телом тепла во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. В обратном случае направление потока лучистой энергии меняется на противоположное и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы.

В производственных условиях гигиеническое значение имеет диапазон 0,76 – 70 мкм.

Источником инфракрасного излучения в производственных условиях являются нагретые поверхности слитков, чушек, листов, поковок, разливаемый жидкий металл, открытое пламя печей, сварочное пламя (при электро и газосварке) и т.п.

По характеру излучения производственные источники тепла и лучистой энергии подразделяются на четыре основные группы:

1) Источники с температурой до 500°С – спектр содержит исключительно длинноволновое ИКИ;

2) Источники с температурой от 500°С до 1200°С – в спектре содержится ИКИ-А, ИКИ-В, ИКИ-С, но появляется также видимое излучение слабой интенсивности, сначала красное, а затем белое;

3) Источники с температурой от 1200°С до 2000°С – спектр содержит как все виды ИКИ, так и видимое излучение высокой яркости;

4) Источники с температурой от 2000°С до 4000°С – спектр наряду с инфракрасным и видимым излучением содержит ультрафиолетовое излучение.

Интенсивность теплового излучения на рабочих местах может колебаться от 175 Вт/м2 до 13956 Вт/м2. К горячим цехам относят цеха, в которых тепловыделение превышает 23 Дж/м2.

В литейных цехах (нагрев и обработка деталей) интенсивность излучения составляет 1392 – 3480 Вт/м2.

В производственных помещениях с большим тепловыделением (горячие цеха) доля тепла, приходящее на инфракрасное излучение, может составлять до 2/3 выделяемого тепла и только 1/3 составляет конвекционное тепло, т.е. тепло, передающееся при контакте с нагретым воздухом [1,4,10].

Таблица 2.1 – Воздействие теплового излучения на организм человека [4]

Интенсивность теплового излучения, Q, Вт/м2

Характер воздействия

До 280

Порог чувствительности

280…560

Переносимо в течение рабочего дня и более, слабое действие без нарушения терморегуляции

560…1050

Терпимо до 3…5 мин., умеренное действие со слабым нарушением терморегуляции

1050…1630

Терпимо до 40…50 с, среднее действие с незначительным нарушением терморегуляции

1630…2090

Терпимо до 20…30 с, большое действие со значительным нарушением терморегуляции

2090…2790

Терпимо до 12…24 с, высокое действие и нарушение терморегуляции

2790…3940

Терпимо до 8…10 с, сильное действие с возможными ожогами кожи и пожаро-взрывная опасность

Более 3940

Терпимо не более 2…5 с, очень сильное действие, возможен тепловой удар

ИК-излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК-излучения является его способность проникать в живую ткань на разную глубину.

Лучи длинноволнового диапазона (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 – 0,2 мм. Поэтому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма.

Лучи коротковолнового диапазона (от 0,78 до 1,4 мкм) обладают способностью проникать в ткани человеческого организма на несколько сантиметров. Такое ИК-излучение легко проникает через кожу и черепную коробку в мозговую ткань и может воздействовать на клетки головного мозга, вызывая его тяжелые поражения. В частности, ИК-излучение может привести к возникновению специфического заболевания – теплового удара, проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др.

При облучении коротковолновыми ИК-лучами наблюдается повышение температуры легких, почек, мышц и других органов. В крови, лимфе, спинномозговой жидкости появляются специфические биологически активные вещества, наблюдаются нарушения обменных процессов, изменяются функциональное состояние центральной нервной системы.

Длительное воздействие инфракрасных лучей с длиной волны 0,72 – 1,5 мкм (лучи Фохта) вызывают катаракту глаз [10].

НОРМИРОВАНИЕ ТЕПЛОВОГО ИЗЛУЧЕНИЯ И СПОСОБЫ ЗАЩИТЫ ОТ НЕГО

Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно требований нормативных документов интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать [10]:

  • 35 Вт/м2 при облучении более 50% поверхности тела;

  • 70 Вт/м2 при облучении от 25 до 50% поверхности тела;

  • 100 Вт/м2 при облучении не более 25% поверхности тела.

От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Санитарные нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45°С, а для оборудования, внутри которого температура близка к 100°С, температура на его поверхности должна быть не выше 35°С [5].

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите рабочих от возможного перегрева [3]:

  • дистанционное управление ходом технологического процесса;

  • воздушное или водо-воздушное душирование рабочих мест;

  • устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха;

  • использование защитных экранов, водяных и воздушных завес;

  • применение средств индивидуальной защиты, спецодежды, спецобуви и др.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов [3]:

  1. Непрозрачные – к таким экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др. В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника.

  2. Прозрачные – это экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы. В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран.

  3. Полупрозрачные – к ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

По принципу действия экраны подразделяются на [10]:

  • теплоотражающие,

  • теплопоглощающие,

  • теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску[9].

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др [9].

Эффективность защиты от теплового излучения с помощью экранов оценивается по формуле [9]:

, (6)

где Qбзинтенсивность теплового излучения без применения защиты, Вт/м2, Qзинтенсивность теплового излучения с применением защиты, Вт/м2.

Кратность ослабления теплового потока, т, защитным экраном определяется по формуле:

, (7)

где Qбз - интенсивность потока излучателя (без использования защитного экрана), Вт/м2, Qз - интенсивность потока теплового излучения экрана, Вт/м2.

Коэффициент пропускания экраном теплового потока , τ, равен:

τ = 1/m (8)

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) [6].

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с [8].

Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку [8].

Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2) [7].

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах).

Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) [8].