Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электротехника.docx
Скачиваний:
7
Добавлен:
19.11.2019
Размер:
80.47 Кб
Скачать

1. Участок цепи, содержащий активное сопротивление (рис. 2.6).

Рис. 2.6

Зададимся изменением тока в резисторе по синусоидальному закону

i(t) = ImR sin(ωt + ψi).

Воспользуемся законом Ома для мгновенных значений тока и напряжения

u(t) = R i(t)

и получим

(2.13)

u(t) = R ImR sin(ωt + ψi).

Формальная запись синусоидального напряжения имеет вид

(2.14)

u(t) = UmR sin(ωt + ψu)

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

(2.15)

UmR = R ImR,

(2.16)

ψu = ψi.

Соотношение (2.15) может быть записано для действующих значений

(2.17)

UR = R IR.

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).

Рис. 2.7 и 2.8

2. Участок цепи, содержащий идеальную индуктивность (рис 2.9)

Рис. 2.9

Зададим изменение тока в индуктивности по синусоидальному закону

i(t) = ImL sin(ωt + ψi).

Используем уравнение связи между током и напряжением в индуктивности

uL = L · di / dt

и получим

uL(t) = ωL · ImL cos(ωt + ψi).

Заменим cos на sin и получим

(2.18)

uL(t) = ωL · ImL sin(ωt + ψi + 90°).

Формальная запись синусоидального напряжения имеет вид

(2.19)

uL(t) = UmL sin(ωt + ψu).

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

(2.20)

UmL = ωL · ImL,

(2.21)

ψu = ψi + 90°.

Уравнение (2.20) можно переписать для действующих значений

(2.22)

UL = ωL · IL.

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

Рис. 2.10 и 2.11

3. Участок цепи, содержащий ёмкость (рис. 2.12)

Рис. 2.12

Зададим изменение тока в емкости по синусоидальному закону

i(t) = ImC sin(ωt + ψi).

Используем уравнением связи между током и напряжением в емкости

uC = 1 / C · ∫ i dt,

и получим

uC = 1 / (ωC) · ImC (-cos(ωt + ψi)).

Заменим –cos на sin

(2.23)

uC = 1 / (ωC) · ImC sin(ωt + ψi - 90°).

Формальная запись синусоидального напряжения имеет вид

(2.24)

uC = UmC sin(ωt + ψu).

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

(2.25)

UmC = 1 / (ωC) · ImC,

(2.26)

ψu = ψi - 90°.

Уравнение (2.25) можно переписать для действующих значений

(2.27)

UC = 1 / (ωC) · IC.

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.

Рис. 2.13 и 2.14

4. Сопротивления в цепи переменного тока

В цепях переменного тока выделяют следующие виды сопротивлений.

Активное. Активным называют сопротивление резистора. Условное обозначение

Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты.

Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Для емкостного сопротивления выше была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC.

Активная мощность P потребляется электросопротивлением устройства, поэтому употребляются также названия резистивная или омическая, и преобразуется в полезную световую, тепловую, механическую и другие виды энергии. Активная нагрузка – это осветительные и электронагревательные приборы: лампы накаливания, теплые полы, утюги, электрочайники, электроплиты и т.д. Единицей измерения активной мощности является ватт (Вт, W). Коэффициент перевода Вт в ВА в данном случае можно считать равным единице, то есть общую мощность потребителей этого типа определяют суммированием паспортных значений в ваттах. То есть, если, например, необходимо учитывать одновременную работу освещения из четырех ламп накаливания по 60 Вт и электроконвектора паспортной мощностью в 2 кВт выполняем простую операцию: 60 х 4 + 2000 = 2240 Вт или практически 2240 ВА.

Реактивная мощность Q (reactive power) – это понятие обозначает ту часть электроэнергии (реактивная составляющая), которая расходуется на создания переменных электромагнитных полей, возникающих при переходных процессах в оборудовании, имеющем в своем составе индуктивные и/или емкостные составляющие (катушки индуктивности, конденсаторы и т.п.). Реактивная мощность неизбежна при работе электродвигателей, трансформаторов и, в то же время, она не выполняет полезной работы, но создает дополнительную нагрузку на электросеть. Единицей измерения реактивной мощности является вольт-ампер реактивной мощности (ВАр, VAr). Как правило, в технических характеристиках электрооборудования с реактивной мощностью (холодильники, микроволновые печи, стиральные машины, кондиционеры, люминесцентные лампы, электроинструменты, сварочные аппараты и т.д.) указывается его активная мощность в Вт и cosφ – коэффициент мощности (power factor, PF). Значение cosφ указывает на ту часть потребляемой электроэнергии, которая преобразуется в активную мощность (при cosφ = 0,7, например, 70% «уйдет» на выполнение полезной работы, а оставшиеся 30% составят реактивную мощность). То есть, если в техническом паспорте холодильника указана мощность 700 Вт и cosφ = 0,7, то его полная мощность будет равна 750/0,6 = 1250 ВА.

Ваттметр – измерительный прибор, имеющий назначение определять работу совершаемую электрическим током в единицу времени для прохождения тока через какой-либо проводник (определение мощности электрического тока или электромагнитного сигнала).

Ваттметр может определить количество ваттов необходимых для получения некоторой силы электрического света в каждую секунду времени или определить величину выполняемой работы в единицу времени каким-либо электрическим прибором. Работа совершаемая электрическим прибором в единицу времени (его мощность) определяется в ваттах и является произведением числа амперов (сила тока) потребляемых данным видом электрических потребителей на разность потенциалов (+ -) концов этой части цепи измеряемой в вольтах.

Для определения мощности электрического тока и используются ваттметры, представляющие собой не что иное, как электродинамометр. Проходящий ток распределяется на две части, одна из которых является, по сути, контролем, а вторая опытом, изменяя сопротивление на опытной части и измеряя разность потенциалов на выходе и определяется мощность электрического тока.

По назначению и диапазону частот ваттметры можно разделить на три основные категории: – низкочастотные (и постоянного тока); – радиочастотные; – оптические.

Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и ее вывода пользователю ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Низкочастотные ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры - измерители реактивной мощности. Цифровые приборы обычно совмещают в себе возможность измерения активной и реактивной мощности.

Радиочастотные ваттметры образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Деление этой подгруппы связано в основном с применением различных типов первичных преобразователей. Выпускаемые ваттметры используют преобразователи на базе термистора, термопары или пикового детектора; значительно реже, применяются датчики, основанные на других принципах. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за несогласования входного сопротивления приемных датчиков с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не реальную мощность линии, а поглощенную, которая отличается от действительной.

Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. К недостаткам термисторных ваттметров относится их малый диапазон регистрации – несколько милливатт.

В ваттметрах проходящей мощности в качестве первичного преобразователя используется устройство, позволяющее ответвлять от основного тракта передачи очень небольшую долю энергии. Отведенная часть энергии подается на вторичный преобразователь, откуда сигнал измерительной информации подается на функциональный преобразователь и, далее, на показывающее устройства

№5 ТРЕУГОЛЬНИК НАПРЯЖЕНИЙ

ТРЕУГОЛЬНИК НАПРЯЖЕНИЙ - графическое изображение активного Ua, реактивного Ul и входного Uвх напряжений в цепи переменного тока с активным сопротивлением и индуктивностью.

Угол сдвига фаз между напряжением и током определяется из треугольника через cos ф = Ua/U или tg ф = Ul/Ua .