Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1,2,3_правл_2.doc
Скачиваний:
26
Добавлен:
18.11.2019
Размер:
6.43 Mб
Скачать

3.2. Структурная схема.

Структурная схема (СС) определяет покаскадное строение элементов функциональной схемы, указывая типы активных приборов и функции отдельных каскадов, а также последовательность их соединения и параметры входных и выходных сигналов. Практически разработка структурной схемы сводится к выбору активного прибора для каждого элемента функциональной схемы на основе анализа элементарной базы современных полупроводниковых приборов и интегральных микросхем – ИМС, представленной в справочниках [30-38] и таблицах приложений П5-П19. Наиболее перспективной является элементная база ИМС. При проектировании желательно избегать применения программируемых логических интегральных схем ПЛИС (контроллеров, ПЗУ и т.п.), отдавая предпочтение микросхемам «жесткой» логики одной серии или фирмы, т.к. они согласованы по уровням питающих, входных и выходных напряжений и сопротивлений и, кроме того, внедрение в эксплуатацию ПЛИС требует высокой квалификации и трудоемкости разработчиков и потому затруднительно.

Разработка структурной схемы начинается с выбора типа опорного или задающего генератора (ОГ, ЗГ). Основанием для выбора являются требования к нестабильности частоты δf и уровню частотного шума Nчш выходного сигнала, таблицы 3.1 и [1, 3, 4, 5 ,9]. При этом необходимо помнить, что для возбудителей ПКС с умножителем частоты нестабильность частоты и уровень шума повышаются в раз относительно выходного сигнала ОГ. Для возбудителей КНС и ПКС со смесителем нестабильность частоты и уровень шума выходного сигнала определяются, как было указано параметрами ОГ. В связи с тем, что справочные данные на эти параметры генераторов часто отсутствуют, при выборе типа ЗГ ориентировочно (произвольно) задаются частотой и мощностью ЗГ – fЗГ, РЗГ по данным таблицы в приложении П5-П6 и [30-38], учитывая, что для высокостабильных генераторов:

и нестабильность частоты, и уровень шума увеличиваются с ростом частоты и мощности ЗГ (δf↑ → fЗГ↑, РЗГ↑). Для типового генератора в диапазоне (1–10) МГц δf ≥5·10-4 Nчш > -125 дБ/Гц, для уникального кварцевого генератора δf ≥5·10-6 Nчш > -165 дБ/Гц [2].

После выбора типа ЗГ определяют полный коэффициент умножения умножителя частоты и число составляющих его каскадов N умножителей меньшей кратности , где , – частота выходного и входного сигнала i-того каскада умножения таким образом, чтобы . Типы умножительных каскадов и их парциальные коэффициенты умножения ni определяются по справочным данным: приложения П10 и [30‑38].

При этом необходимо учитывать, что рабочая частота умножительных каскадов увеличивается с ростом номера каскада i (начиная с первого, i=1, ближайшего к ЗГ): ; ; .

Заметим, что при M >>1 умножитель частоты может быть реализован при N=1 однокаскадным, в виде гибридной интегральной схемы (ГИС) на диоде с накоплением заряда (ДНЗ) на частотах f ≤ 10 ГГц, однако в этом случае необходима высокая мощность входного сигнала Рвхi≈ 1 Вт и сложный полосовой фильтр на выходе [48].

После выбора микросхем умножительных каскадов определяют выходную мощность последнего из них РвыхN и необходимый коэффициент усиления выходного усилителя мощности (ВУМ):

Основные функции ВУМ сводятся к обеспечению заданной выходной мощности в заданном диапазоне частот и коэффициента подавления неосновного излучения. Проектирование усилителя начинается с выбора типа активного прибора (АП) и выходного фильтра, схемы усилителя и оценки необходимого числа каскадов.

Выбор типа АП (микросхемы или транзистора) осуществляется по заданной рабочей частоте f0 и мощности Рвых на основании справочных данных [30-38] или приведенных в таблицах П7, П17, П18 приложения. При этом необходимо помнить, что для любых типов АП уровень выходной мощности может быть увеличен в несколько раз за счет использования устройств сложения мощности на общей нагрузке – сумматоров [2]. Примеры построения структурных схем усилителей со сложением мощности на общей нагрузке приведены в [3, 4, 5]. Наиболее часто ВУМ выполняются по двухтактной или балансной схеме [2, 4.3] с использованием сумматоров, частотно-избирательных фильтров, вентилей и других пассивных СВЧ устройств.

После выбора типа АП определяют его коэффициент усиления Кр по таблице приложения П7 или данным [30-38]. Для транзисторов возможен теоретический расчет Кр, как указано в [2, 7]. Затем определяют необходимую мощность возбуждения ВУМ . Если , то используются дополнительные каскады предварительного усиления, входная мощность которых определяется аналогично выходному каскаду:

где i – номер каскада предварительного усиления, отсчитываемый от УЧ.

Число каскадов определяется максимальным значением imax, для которого .

Выбор типа выходного фильтра осуществляется по данным таблицы приложения П8 на основании заданных параметров его частотной характеристики: рабочая частота f0, затухание L, полоса пропускания по уровню 3 дБ.

Затухание фильтра определяется требованиями по уровню подавления неосновного излучения (внеполосного и побочного), которые устанавливаются согласно условиям электромагнитной совместимости таким образом, чтобы средняя мощность неосновного излучения любого вида Рни не превышала определенного уровня.

РНИ5∙10-2Вт для f030 МГц,

РНИ25∙10-6Вт для 0.4≤ f030 МГц.

При этом требуемый уровень подавления неосновного излучения составляет дБ.

Полоса пропускания П определяется шириной спектра выходного сигнала, которую можно принимать [1]:

для аналогового сигнала,

для дискретного импульсного сигнала,

где Fmax – максимальная частота спектра входного сигнала – передаваемого сообщения,

– тактовая НЧ информационного сигнала UF, τ – длительность импульса, N – разрядность кода,

– частота дискретизации [1].

Значения Fmax для РЭС различного назначения приведены в [2, стр. 28].

Необходимо отметить, что на данном этапе проектирования часто вырисовывается несколько возможных вариантов реализации структурной схемы, и однозначный выбор наиболее приемлемого из них может быть сделан путем детального изучения и сравнения параметров применяемых микросхем на этапе технического проектирования.

Проектирование НЧ устройств формирования сигналов аналого-цифровых преобразователей АЦП, шифраторов, кодеров осуществляется на основании приведенных в литературе данных о схемах и характеристиках действующих образцов – прототипов данного классификационного типа [1, 2]. Выбор микросхем производится по справочным данным на основании заданных параметров НЧ информационного сигнала UF: частота дискретизации , тактовая частота , где N – разрядность кода, длительность импульса .

Примеры структурных схем различных устройств, функциональные схемы которых рассмотрены в главе 2 и [1, 2] приведены далее на рисунках 3.6-3.8.