Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лк 17.11.11.doc
Скачиваний:
0
Добавлен:
09.11.2019
Размер:
82.43 Кб
Скачать

В чем же состоит сущность нтр, ее значение, когда и как она возникла?

НТР имела свои предпосылки. Они были заложены в ходе развития науки и техники еще в конце ХІХ и первой половине ХХ в. Среди них можно выделить: научные, материально-технические и социальные.

Научной предпосылкой НТР послужила революция в естествознании на рубеже ХІХ–ХХ вв., которая резко расширила пределы познания природы. Открытия электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали собой прорыв науки в область микромира и больших скоростей, что выдвинуло вопрос о практическом использовании новых открытий.

Материально-технической предпосылкой явилось дальнейшее развитие техники, создание мощной индустриальной базы в виде гигантских предприятий с широкой механизацией и конвейеризацией труда, переход промышленности к массовому производству важнейших видов продукции. Без таких условий ни один научный проект не мог быть реализован, воплощен в жизнь

И наконец в социальной области возникновение НТР обусловлено внедрением научных открытий, приводящих относительно быстро к повышению производительности труда, а следовательно, к увеличению прибавочной стоимости, возможности удовлетворения потребностей человека, поиску новых, более изощренных форм и методов влияния на трудящихся, подчинения их воли технологической логике.

Современную НТР требуется осмыслить как такое качественное преобразование всей системы общественного труда, которое является предпосылкой возникновения нового типа человеческой личности вследствие развития человека, сформировавшегося внутри машинного производства.

Как же происходят эти изменения, что конкретно меняется?

Во-первых, происходят принципиальные качественные изменения в орудиях труда, и в первую очередь в рабочей машине.

Во-вторых, осуществляется качественный скачок в производстве предметов труда, что выражается в создании искусственных видов сырья, новых материалов с иными, чем у естественных, физическими и техническими качествами, с заранее заданными свойствами (пластмассы, искусственные алмазы, синтетические волокна, смолы и т.д.).

В-третьих, существенно изменяется «сосудистая система производства», что связано как с освоением новых видов и источников энергии (в первую очередь атомной), так и с необходимостью создания энергосберегающей технологии.

В-четвертых, совершается качественный скачок в развитии человеческого фактора как субъективного элемента производительных сил.

В-пятых, происходит качественное изменение самого содержания труда производителей. Автоматизация ведет к замене не только физических, но и ряда интеллектуальных функций человека.

Если до средины XX века НТП проявлялся в механизации, то, начиная с 50-х годов, – в автоматизации труда, в переходе от частичной механизации к комплексной автоматизации.

Наука становится все более необходимой частью процесса производства, выступая в качестве его непосредственной производительной силы, а сам процесс превращается, из простого процесса труда в научный процесс и представляет собой "экспериментальную науку, материально-творческую и предметно воплощающуюся науку".

История науки свидетельствует о том, что в конце концов результаты фундаментальных исследований не просто находят практическое применение, а оказывают кардинальное воздействие на технический прогресс, революционизируют технологию, производство в целом и стимулируют инженерное творчество.

Практика требует, чтобы наука, особенно фундаментальная, опережала технику и производство. Вместе с тем финансирование науки в нашей стране постоянно уменьшается. Так, в 1996 г. оно составляло 468,1; 1997 – 341,7; 1998 – 315,1; 1999 – 287,9 млн грн., что замедляет развитие фундаментальных исследований.

В настоящее время финансирование науки в Украине продолжает оставаться на архинизком уровне.

Следует заметить, что опережающее развитие науки по отношению к промышленности – не случайный, преходящий эпизод, а специфическая особенность НТР.

Компьютеризация

Историческая справка

Закладка фундамента компьютерной революции происходила медленно и далеко не гладко. Отправной точкой этого процесса можно считать изобретение счетов, сделанное более 1500 лет назад, по-видимому, в странах Средиземноморья. Вплоть до ХVII в., ознаменовавшегося невиданным подъемом творческой мысли, счеты как вычислительный инструмент оставались практически вне конкуренции. Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи. Он был сделан в одном из его дневников (ученый начал вести дневник еще до открытия Америки в 1492 г.).

Заметный след в истории оставило изобретение Джоном Непером логарифмов, о чем сообщалось в публикации 1614 г. Его таблицы, расчет которых требовал очень много времени, позже были «встроены» в удобное устройство, чрезвычайно ускоряющее процесс вычисления, – логарифмическую линейку. Она была создана в конце 20-х годов ХVII в. В 1617 г. Непер придумал и другой способ перемножения чисел. Инструмент, получивший название «костяшки Непера», состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа в прилегающих друг к другу по горизонтали сегментах, получали результат их умножения.

Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство – ящик с многочисленными шестеренками.

В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, он решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины», – заметил Лейбниц.

В 1673 г. он изготовил механический калькулятор. «Арифметический прибор» Готфрида Вильгельма Лейбница – двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление, для чего, в дополнение к зубчатым колесам использовался ступенчатый валик.

Лейбниц заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.

Технология вычислений при ручном счете, предложенная Гаспаром де Прони, который разделил численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, приведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой.

Чарльзом Беббиджем был разработан проект аналитической машины – механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина включала пять устройств – арифметическое (АУ), запоминающее (ЗУ), управления, ввода (как и первые ЭВМ появившиеся 100 лет спустя). АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на 1000 50-разрядных чисел!). Для ввода данных и программы использовались перфокарты. Предполагаемая скорость вычислений: сложение и вычитание за 1 с., умножение и деление – за 1 мин. Помимо арифметических операций имелась команда условного перехода. Программы для решения задач на машине Беббиджа, а также описание принципов ее работы были составлены Адой Августой Лавлейс – дочерью Байрона.

Были изготовлены отдельные узлы машины. Всю машину из-за ее громоздкости построить не удалось. Только зубчатых колес для нее понадобилось бы более 50 тыс. Заставить такую махину работать можно было только с помощью паровой машины, что и намечал Беббидж. Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую ВМ – Марк – I. Ее основные блоки – арифметики и памяти были использованы на зубчатых колесах! Если Беббидж намного опередил свое время, то Айкен, использовал все те же зубчатые колеса, т.е. в техническом плане при реализации идеи Беббиджа использовал устаревшие решения. Еще десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать (у себя дома) цифровую вычислительную машину с программным управлением и с использованием – впервые в мире! – двоичной системы счисления. В 1937 г. машина Z1 (Цузе 1) заработала! Она была двоичной, 22-х разрядной, с плавающей запятой, с памятью на 64 числа и все это на чисто механической (рычажной) основе! В том же 1937 г., когда заработала первая в мире двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированной ВМ, впервые в мире применив электронные лампы (300 ламп).

Пионерами электроники оказались и англичане – в 1942-43 гг. в Англии была создана (с участием Алана Тьюринга) ВМ «Колос». В ней было 2 тыс. электронных ламп! Машина предназначалась для расшифровки радиограмм германского вермахта.

Завершающую точку в создании первых ЭВМ поставили почти одновременно, в 1949-1952 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭДСАК, 1949 г. Сергей Лебедев, МЭСМ, 1951 г., Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭДВАК, 1952 г.), создавшие ЭВМ с хранимой в памяти программой.

профессор А. Н. Соков откликнулся статьей с провидческим названием «Мыслительная машина» (журнал «Вокруг света», № 18, 1914 г.), в которой написал: «Если мы имеем арифмометры, складывающие, вычитающие, умножающие миллионные числа поворотом рычага, то, очевидно, время требует иметь логическую машину, способную делать логические выводы и умозаключения одним нажиманием соответствующих клавиш. Это сохранит массу времени, оставив человеку область творчества, гипотез, фантазии, вдохновения – душу жизни».

«Машина логического мышления» А. Н. Щукарева представляла собой ящик высотой 40, длиной – 25 и шириной 25 см. В машине имелись 16 штанг, приводимых в движение нажатием кнопок, расположенных на панели ввода исходных данных (смысловых посылок). Кнопки воздействовали на штанги, те на световое табло, где высвечивался (словами) конечный результат (логические выводы из заданных смысловых посылок).

Главное, что сделал Щукарев, заключалось в том, что он, в отличие от Джевонса и Хрущева, видел в машине не просто школьное пособие, а представлял ее своим слушателям как техническое средство механизации формализуемых сторон мышления.

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин.