Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы с 21-25.doc
Скачиваний:
5
Добавлен:
27.09.2019
Размер:
697.34 Кб
Скачать

21.Общие свойства плазмы.

Плазма – это ионизованный газ, содержащий в общем случае электронный, ионы и нейтральные атомы, для которых выполняется следующие условия:

1. Концентрация отрицательно заряженных частиц = концентрации положительно заряженных частиц.

2. Дебаевская длина волны существенно меньше, чем характерный объем в котором располагается ионизованный газ.

3. Частота соударений между положительными и отрицательными заряженными частицами больше чем частота соударений электронов с атомами.

3 условие соответствует сильно ионизованной плазме.

Свойства плазмы:

Квазинейтральность. Одна из важных особенностей плазмы в том, что отрицательный заряд электронов в ней почти точно нейтрализует положительный заряд ионов. При любых воздействиях на нее плазма стремится сохранить свою квазинейтральность. Если в каком-то месте происходит случайное смещение (например, за счет флуктуации плотности) части электронов, создающее избыток электронов в одном месте и недостаток в другом, в плазме возникает сильное электрическое поле, которое препятствует разделению зарядов и быстро восстанавливает квазинейтральность.

Длина и радиус Дебая. Пространственный масштаб разделения заряда или ту характерную длину, ниже которой (по порядку величины) разделение зарядов становится заметным, можно оценить, вычисляя работу по разделению зарядов на расстояние d, которая совершается силами возникающего на длине x электрического поля E = 4ne ex.

С учетом того, что сила, действующая на электрон равна eE, работа этой силы равна. Эта работа не может превышать кинетическую энергию теплового движения частиц плазмы, которая для случая одномерного движения равна (1/2)kT, где k – постоянная Больцмана, T – температура.

Из этого условия следует оценка максимального масштаба разделения заряда .Эта величина называется длиной Дебая по имени ученого, который ввел ее впервые, исследуя явление электролиза в растворах, где встречается аналогичная ситуация. Для рассмотренного выше примера плазмы при атмосферных условиях (ne = 5,4·1019 см–3 Т = 273 К, k = 1,38·10–16 эрг/К) получаем d = 1,6 ·10–19 см, а для условий термоядерной плазмы (ne = 1014 см–3, T = 108K ) величина d = 7·10–3 см.

Для существенно более разреженной плазмы длина Дебая может оказаться больше размеров самого плазменного объема. В этом случае условие квазинейтральности нарушается, и такую систему уже нет смысла называть плазмой.

Длина d (или радиус Дебая ) является важнейшей характеристикой плазмы. В частности, электрическое поле, создаваемое каждой отдельной заряженной частицей в плазме, экранируется частицами противоположного знака и фактически исчезает на расстоянии порядка радиуса Дебая от самой частицы. С другой стороны, величина d определяет глубину проникновения внешнего электрического поля в плазму. Заметные отклонения от квазинейтральности могут происходить вблизи границ плазмы с твердой поверхностью как раз на расстояниях порядка длины Дебая.

22. Методы диагностики параметров плазмы.

Диагностика плазмы (способный распознавать) - определение значений параметров плазмы, характеризующих её состояние. T. к. плазма в общем случае представляет собой многокомпонентную неравновесную неоднородную систему с широчайшим спектром всевозможных значений параметров, диагностика её сталкивается с большими принципиальными и техн. трудностями. К параметрам плазмы относятся плотность n, электронная Те и ионная Ti темп-ры, интенсивность излучения, электрич. и магн. поля и др. Понятие «температура» обычно используется условно, т. к. распределение ч-ц по энергиям в лаб. и косм. плазме редко бывает максвелловским. В таких случаях речь идёт о кинетич. темп-ре, т. е. о ср. энергии ч-ц. Методы Д. п. делятся на активные и пассивные.

Пассивные методы (напр., измерение собств. излучения плазмы) не оказывают влияния на исследуемый объект. К ним относятся спектроскопические методы, а также фотографирование и измерения эл.-магн. волн в широком диапазоне (тормозное и циклотронное излучение)

В активных методах плазма непосредственно вовлекается в процесс измерения, и это может внести искажения в её состояние.

Активные методы тем не менее используются наряду с пассивными, расширяя диапазон определяемых параметров. Наиболее распространены след. активные методы Д. п.: зондирование плазмы электрич. и магн. зондами, СВЧ излучением, пучками заряж. и нейтр. ч-ц (корпускулярная Д. п.).

Корпускулярная Д. п. может быть и пассивным методом, если исследуются св-ва ч-ц, выходящих из объёма изучаемой плазмы.

Зонды вводятся внутрь плазмы для измерения её локальных параметров. Электрическим (ленгмюровским) зондом измеряют ток на него в зависимости от потенциала зонда относительно плазмы. Ток насыщения позволяет определить плотность плазмы, а форма хар-ки при малых потенциалах даёт электронную темп-ру Те. Эти зонды находят широкое применение при исследованиях холодной незамагниченной лаб. плазмы и космической плазмы. Применение зондов при исследованиях горячей плазмы ограничено вследствие загрязнений, вносимых материалом зонда, а также вследствие трудностей анализа измерений при наличии сильных магн. полей.

Для измерений магн. полей используются магнитные зонды — соленоиды разл. размеров, вводимые в плазму. Такой зонд регистрирует dH/dt, а для получения напряжённости магн. поля Н сигнал с зонда интегрируется. В косм. плазме магн. поля измеряются феррозондами и квантовыми магнетометрами, а также по вращению плоскости поляризации (Фарадея эффект).

Активная корпускулярная Д. п. (зондирование нейтр. атомами и быстрыми заряж. ч-цами) позволяет получать данные о её плотности, темп-ре и полях. При прохождении пучка эл-нов через плазму с сильно изменяющимися полями он отклоняется за счёт поперечной составляющей электрич. поля. Регистрируя величины отклонения от первонач. направления, можно оценить усреднённое вдоль пучка значение электрич. поля. Для плазмы, находящейся в сильном магн. поле, эфф. зондирование осуществляется потоком быстрых нейтр. атомов. Каждый атом зондирующего пучка, потерявший эл-н вследствие перезарядки или ионизации электронным ударом, отклоняется магн. полем и не попадает на регистратор. По наблюдаемому ослаблению пучка можно получить информацию об усреднённых вдоль его траектории n и Т'е.

Зондирование плазмы СВЧ излучением явл. одним из удобных методов определения (особенно для косм. плазмы). Он основан на зависимости диэлектрической проницаемости e плазмы от её плотности:

e=1-w2p/w2, где wр — плазменная частота.

Спектроскопическая Д. п. явл. другим важнейшим методом исследования косм. и лаб. плазмы. Каждый из спектроскопич. методов пригоден лишь в очень ограниченной области параметров плазмы. Анализ непрерывного спектра излучения плазмы позволяет определить Те и nе. Ширина и форма наблюдаемых спектр. линий могут дать информацию о темп-ре газа (по Доплера эффекту), о плотности заряж. ч-ц (по Штарка эффекту), о магн. полях (по Зеемана эффекту и эффекту Фарадея). Вклад каждого из этих механизмов в наблюдаемый контур линии можно выделить даже в тех случаях, когда их влияние соизмеримо. Эффект Штарка сильнее всего влияет на далёкие «крылья» спектр. линии, эффект Доплера — на центральную её часть, а зеемановские компоненты легко выделить, исследуя поляризацию. Анализ контуров линий излучения высокоионизов. атомов позволяет получить ионную темп-ру Ti горячей плазмы. Отношение интенсивностей спектр. линий даёт возможность в ряде случаев определить Те.

Лазерная Д. п. Анализ рассеянного на свободно движущихся эл-нах эл.-магн. излучения стал возможным только благодаря появлению и развитию лазеров большой мощности.

При небольшой плотности плазмы интенсивность рассеянного излучения пропорц. плотности. Контур линии рассеянного света определяется эффектом Доплера, причём, т. к. рассеяние происходит на эл-нах, а не на ионах, ширины спектр. линий составляют сотни А. В плотной плазме возникает рассеяние на флуктуациях плотности зарядов, и линия рассеянного излучения имеет в центре довольно острый пик, близкий по форме ионному доплеровскому.

Фотографирование плазмы в разл. спектр. диапазонах позволяет грубо оценить пространств. распределение n и Te. Особенно полезны фотографии плазмы с помощью камеры-обскуры в мягком рентг. излучении. Сверхскоростная фотография позволяет понять динамику развития неустойчивостей и получить информацию о хар-ре вз-ствия плазмы с магн. полем.