Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpargalki.doc
Скачиваний:
4
Добавлен:
26.09.2019
Размер:
1.75 Mб
Скачать

25.Дифференциальные уравнения первого порядка с разделяющимися переменными.

ДУ 1-ого порядка с разделяющимися переменными назыв. Уравнения вида N(x)M(y) x +P(x)Q(y)dy=0 (1)

N(x),M(y),P(x),Q(y)-это функции, непрерывные на некотором промежутке.Ур-ие(1) разделим на произведение функции P(x)M(y).В результате получим В этом случае говорят, что переменные разделены.Проинтегрирует последнее ур-ие: это и есть общий интеграл ур-ия(1)

26.Линейные дифференциальные уравнения первого порядка.

Линейные ДУ 1-ого порядка назыв. Уравнение след. Вида y’+p(x)*y=f(x) (1), где p(x),f(x)-функции, непрерывные на некотором промежутке. Решение ур-ия(1) будем искать в виде y=u (2) y’=u +u ’ (3). Подставим y,y’ в ур-ие(1). В результате получим u +u ’+p(x)u =f(x)

u +u( ’+p(x) )=f(x) (4) функция подбирается таким образом, чтобы выражения в скобках обратилось в 0, т.е. ф-я удовлетворит ур-ию ’+p(x) =0

d =-p(x) dx . Получили ур-ие с раздел переменными, разделим го на ф-ю :

(5) Проинтегрируем ур-ие (5) ln = -

=e (что после е это степень) (6) Подставим найденное значение в ур-ие (4)

Ue (что после е это степень)=f(x) По определению интеграла можно заменить e (что после е это степень)=f(x); du=f(x)e (что после е это степень)

Интегрируем полученное ур-ие:u=f(x) e (что после е это степень)dx+c

Подставим найденные ф-ии u и в равенство (2), получим y=( e ( что после е это степень)dx+c) e (что после е это степень).

27. Дифференциальные уравнения второго порядка.

Рассмотрим ДУ 2-ого порядка F(x,y,y’,y’’)=0. Предположим, что его можно разрешить производной: y’’=F(x,y,y’) (1). Дано дифф. Ур-ие(1). Требуется найти решение ур-ия, удовлетворяющие условиям: y’=

y= (2)

x=x

(x , , ’) кот. Назыв. Начальными данными.

Определение 1. Ф-я y= (x,C ,C ) –назыв. Общим решением ур-ия(1), если для любых C ,C , взятых из некоторых промежутков, она явл. Решением ур-ия(1)

Определение 2. Те решения, кот. Получаются из общего решения фиксированием произвольных постоянных C ,C назыв. Частными.

28.Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линей. Однородными ДУ с постоян. коэфф-ами назыв. ур-ие вида: y’’+py’+qy=0 (1)

Pqconst

1.Структура общего рещения ур-ия(1)

Теорема 1. Если y -явл. Решением ур-ия(1), то y=e y -также явл. Решением.

Теорема 2.Если y ,y -это решения ур-ия(1), то y= y +y -это также решение ур-ия(1)

Опр-е 1. Функции y ,y назыв. линейно независимыми, если их отношения не явл. Постоянными величинами. В противном случае ф-ии назыв. линейнонезависимыми.

Теорема 3. Если y и y -это линейнонезависимые решения ур-ия (1), то функция y= c y +c y , где c ,c -соnst явл. общим решением ур-ия(1)

Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты.  Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение:

Обшее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:

1.Дискриминант характеристического квадратного уравнения положителен: D > 0. Тогда корни характеристического уравнения k1 и k2 действительны и различны. В этом случае общее решение описывается функцией где C1 и C2 − произвольные действительные числа. 

2.Дискриминант характеристического квадратного уравнения равен нулю: D = 0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:

3.Дискриминант характеристического квадратного уравнения отрицателен: D < 0. Такое уравнение имеет комплексно-сопряженные корни k1 = α + βik1 = α − βi. Общее решение записывается в виде

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]