Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика билеты.doc
Скачиваний:
116
Добавлен:
26.09.2019
Размер:
1.5 Mб
Скачать

25. Уравнения Максвелла в интегральной и дифференциальной формах, их физический смысл. Вихревое электрическое поле. Ток смещения. Электромагнитное поле.

Название

Дифференциальная форма

Интегральная форма

Примерное словесное выражение

Закон индукции Фарадея

Изменение магнитной индукции порождает вихревое электрическое поле

Закон Ампера (с добавкой Максвелла)

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Теорема Гаусса

Электрический заряд является источником электрической индукции

Теорема Гаусса для магнитного поля (в отсутствии монополей)

Магнитная индукция не расходится (не имеет источников)

Закон Ома в дифференциальной форме

-

Плотность электрического тока прямо пропорциональна напряжённости электрического поля. Это уравнение иногда вводится в систему уравнений Максвелла, чтобы она имела однозначное решение (так как это система с 5 переменными).

ρ — плотность электрического заряда (в единицах СИКл/м³)

j — плотность электрического тока (в единицах СИ — А/м²)

λудельная проводимость (электропроводность) (в единицах СИ — м/Ом)

Eнапряжённость электрического поля (в единицах СИ — В/м)

Hнапряжённость магнитного поля (в единицах СИ — А/м)

Dэлектрическая индукция (в единицах СИ — Кл/м²)

Bмагнитная индукция (в единицах СИ — Тл = Вб/м²= кг·с-2·А-1)

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую структуру, чем электростатическое поле. Оно не связано непосредственно с электрическими зарядами, и его линии напряжённости не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле.

Электромагнитное поле - особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Э. п. в вакууме характеризуется вектором напряжённости электрического поля Е и магнитной индукцией В, которые определяют силы, действующие со стороны поля на неподвижные и движущиеся заряженные частицы. Наряду с векторами Е и В, измеряемыми непосредственно, Э. п. может характеризоваться скалярным j и векторным А потенциалами, которые определяются неоднозначно, с точностью до градиентного преобразования . В среде Э. п. характеризуется дополнительно двумя вспомогательными величинами: напряжённостью магнитного поля Н и электрической индукцией D.

27. Интерференция волн. Условия наблюдения интерференционной картины. Понятие когерентности. Интерференция двух монохроматических волн: условия максимумов и минимумов интенсивности через разность фаз и оптическую разность хода, максимальное и минимальное значение интенсивности. (По теме также см. вопрос 29)

Интерференция - взаимное влияние, воздействие каких-либо объектов друг на друга. Его применяют к явлениям, происходящим при сложении волн различной физической природы. Синонимом словосочетанию "интерференция волн" может быть словосочетание "сложение волн". С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Интерференция возникает только в случае, если разность фаз постоянна во времени, т. е. волны когерентны. При этом разность фаз этих колебаний постоянна и определяется только разностью путей, проходимых лучами, или разностью хода D. Интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной d, отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где λ — длина волны. Если λ = 550 нм, то толщина плёнки равняется 550:4=137,5 нм.

Лучи соседних участков спектра по обе стороны от λ = 550 нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску.

Когерентность - согласованное протекание во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания называются когерентными, если разность их фаз остаётся постоянной во времени и при сложении колебаний определяет амплитуду суммарного колебания. Без когерентности невозможно наблюдать такое явление, как интерференция.

Интерференция двух монохроматических волн

В идеальном случае монохроматических источников при наложении двух пучков света с интенсивностями и распределение интенсивности в интерференционной картине описывается формулой:

(1.1)

гдеразность хода интерферирующих волн,волновое число.

Рисунок 1.1.

Интерференция волн от двух точечных монохроматических источников.

Характер наблюдаемой интерференционной картины зависит от взаимного расположения источников и и плоскости наблюдения P (рис. 1.1). Интерференционные полосы могут иметь, например, вид семейства концентрических колец или гипербол. Наиболее простой вид имеет интерференционная картина, полученная при наложении двух плоских монохроматических волн, когда источники и находятся на достаточном удалении от экрана. В этом случае интерференционная картина имеет вид чередующихся темных и светлых прямолинейных полос (интерференционные максимумы и минимумы), расположенных на одинаковом расстоянии друг от друга. Именно этот случай реализуется во многих оптических интерференционных схемах.

Каждый интерференционный максимум (светлая полоса) соответствует разности хода , где m – целое число, которое называется порядком интерференции. В частности, при возникает интерференционный максимум нулевого порядка. В случае интерференции двух плоских волн ширина интерференционных полос l простым соотношением связана с углом схождения интерферерирующих лучей на экране (рис. ниже).

(1.2)

При симметричном расположении экрана по отношению к лучам 1 и 2 ширина интерференционных полос выражается соотношением:

Приближение , справедливое при малых углах , применимо ко многим оптическим интерференционным схемам.

Одной из важных характеристик наблюдаемой интерференционной картины является видность V, которая характеризует контраст интерференционных полос.

По определению

(1.3)

где и – соответственно максимальное и минимальное значения интенсивности в интерференционной картине.

При интерференции монохроматических волн видность V зависит только от соотношения интенсивностей интерферирующих пучков света и выражается формулой:

(1.4)

В случае пучков равной интенсивности ( ) из (1.1) следует:

(1.5)

При этом видность интерференционной картины максимальна и равна единице.

При видность картины стремится к нулю и интерференционные полосы слабо заметны на ярком светлом фоне.

29. Основные понятия в теории интерференции. Оптическая длина пути и оптическая разность хода. Условия максимумов и минимумов интенсивности света через разность фаз и оптическую разность хода. (см. также вопрос 27)

Оптическая длина пути, оптический путь, между точками А и В прозрачной среды; расстояние, на которое свет (оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Поскольку скорость света в любой среде меньше его скорости в вакууме, О. д. п. всегда больше реально проходимого светом расстояния (или, в предельном случае вакуума, равна ему). В оптической системе, состоящей из р однородных сред (траектория луча света в такой системе — ломаная линия), О. д. п. равна , где lk — расстояние, пройденное светом в k-той среде (k = 1, 2,..., р), nk — показатель преломления этой среды,  — знак суммы. Для одной среды (р = 1) сумма сокращается до единственного члена ln . В оптически неоднородной среде (с плавно меняющимся n; траектория луча в такой среде — кривая линия), О. д. п. есть , где dl — бесконечно малый элемент траектории луча. Понятие О. д. п. играет большую роль в оптике, особенно в геометрической оптике и кристаллооптике, позволяя сопоставлять пути, проходимые светом в средах, в которых скорость его распространения различна. Геометрическое место точек, для которых О. д. п., отсчитываемая от одного источника, одинакова, называется поверхностью световой волны; световые колебания на этой поверхности находятся в одинаковой фазе.

Разность хода лучей, разность оптических длин путей двух световых лучей, имеющих общие начальную и конечную точки. Понятие Р. х. играет основную роль в описании интерференции света и дифракции света. Расчёты распределения световой энергии в оптических системах основаны на вычислении Р. х. проходящих через них лучей (или пучков лучей).