Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
25-28.docx
Скачиваний:
1
Добавлен:
26.09.2019
Размер:
155.19 Кб
Скачать

25.Линия без искажений. Линия без потерь. Стоячие и смешанные волны.

Линии без искажений

В таких линиях волны всех частот распространяются с одинаковой фазовой скоростью и затухают в равной степени.

При движении электромагнитной волны по линии без искажений волна напряжения и волна тока уменьшаются по амплитуде, но формы волн в начале и в конце линии подобны. Неискажающие линии находят применение в телефонии. При телефонном разговоре по таким линиям не искажается тембр голоса, т.е. не искажается спектральный состав речи.

Для того чтобы линия была неискажающей коэффициент затухания a и фазовая скорость vф не должны зависеть от частоты. Это выполняется, если между параметрами линии существует соотношение:

(13.36)

По определению:

(13.37)

Из (13.37) следует, что коэффициент затухания a и фазовая скорость vф в линии без искажений действительно не зависят от частоты.

Волновое сопротивление

(13.38)

также не зависит от частоты.

Линия без потерь.

Строго говоря, линий без потерь не существует. Однако в высокочастотных линиях, применяемых в радиотехнике, с достаточной степенью точности можно пренебречь продольным сопротивлением R0 и поперечной проводимостью утечки G0 по сравнению с индуктивным сопротивлением wL0 и емкостной проводимостью wC0, т.е. принять R0 = G0 = 0. В этом случае получается так называемая линия без потерь.

В такой линии волновое сопротивление

(13.39)

является чисто активным и не зависит от частоты.

Коэффициент распространения

(13.40)

является чисто мнимой величиной.

Коэффициент затухания a = 0, т.е. отсутствует затухание сигнала.

Фазовая скорость

(13.41)

постоянна и равна скорости света.

Уравнения линии через параметры нагрузки (13.20) для линии без потерь запишутся:

(13.42)

Тогда гиперболические уравнения линии (13.21) в линии без потерь переходят в уравнения с тригонометрическими функциями от действительного аргумента

. (13.43)

Входное сопротивление линии

(13.44)

Стоячие и смешанные волны

Режим стоячей волны

Режим стоячей волны характеризуется тем, что амплитуда отраженной волны равна амплитуде падающей BU = AU то есть энергия падающей волны полностью отражается от нагрузки и возвращается обратно в генератор. В этом режиме, | Г | = 1, kсв =  , kбв = 0.

Режим смешанных волн

В режиме смешанных волн амплитуда отраженной волны удовлетворяет условию 0 < BU < AU то есть часть мощности падающей волны теряется в нагрузке, а остальная часть в виде отраженной волны возвращается обратно в генератор. При этом 0  < | Г | < 1, 1 < kсв <  , 0 < kбв < 1

26.Периодический сигнал и ряд Фурье. Комплексная форма ряда Фурье.

 Периодический сигнал и ряд Фурье

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T, который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными. Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T1=T, а период второй гармоники в два раза меньшим T2=T/2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

 

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω1=ω=2π/T- угловая частота первой гармоники; - нулевая гармоника.

Комплексная форма ряда Фурье.

Выражение называется комплексной формой ряда Фурье функции f(x), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n=1,2, ...)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]