Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ2.docx
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
248.36 Кб
Скачать

1.Предмет,задачи и методы физиологии растений.

Ф.р- учение о протикающих в живой материи процессах

Ф,р- является ортосолью экспериментальной ботаники ,которая как наука изучает процессы происходящие в живых растительных организмах на различных уровнях их организации , начиная с субклеточного, заканчивая фитоцинотическим .Предметом ф.р является функцией растительного организма и функциональные системы их взаимосвязи , изучение всех функций растительного организма

Задачи . раскрытие сущности физиологических процессов установление взаимосвязи между отдельными физиологическими процессами , механизмами регуляции физиологических процессов связывание их изминений под влиянием факторов среды .Методы; экспериментальный , вегетационный ,аналитический .Системный подход

2.Связь физиологии растений с агротехническими науками. К. А. Тимирязев неоднократно указывал, что физиология растений является теоретической основой рационального земледелия. Изучая основные закономерности жизнедеятельности растений, раскрывая зависимость функций растений от условий внешней среды, физиология растений является фундаментальной основой всех агрономических наук (земледелие, растениеводство, овощеводство и др.), создает теоретическую основу агротехнических систем, направленных на повышение урожайности и качества продукции сельскохозяйственных культур. Фундаментальную основу современного научного земледелия и агротехники сельскохозяйственных культур составляют результаты исследований и рекомендации в области: теории фотосинтетической продуктивности посевов, разработки методов повышения использования растениями солнечной энергии, позволяющих довести использование ФАР до 3—5 % (вместо 0,5—1,5 %); разработки физиологических основ и способов применения минеральных удобрений под сельскохозяйственные культуры, позволяющие более эффективно использовать минеральные удобрения без вредных экологических последствий; раскрытия механизмов и повышения уровня биологической фиксаций азота атмосферы бобовыми растениями; выяснения составляющих водного баланса растений и разработки приемов более продуктивного использования осадков, оросительной воды, внедрения капельного и импульсного орошения, автоматизированных оросительных систем; раскрытия природы механизмов устойчивости растений к неблагоприятным факторам внешней среды, приемов, позволяющих растению в экстремальных условиях не только выжить, но и обеспечить достаточно высокую продуктивность (приемы повышения морозоустойчивости, холодостойкости, солеустойчивости и др.); физиологии иммунитета растений, механизмов и условий, повышающих устойчивость сельскохозяйственных растений к болезням и вредителям; познания регуляторных систем и механизмов, обеспечивающих упорядоченность и регуляцию физиологических процессов, способность растений к адаптации в широком диапазоне меняющихся условий среды; использования фитогормонов и синтетических регуляторов роста, позволяющих направленно влиять на ход формирования урожая и его качество в технологиях сельскохозяйственных культур; использования специальных методов и технических средств диагностики функционального состояния растений в полевых условиях, в селекционном процессе, в закрытом грунте для успешного «диалога» с ним с целью оптимизации условий выращивания, борьбы с болезнями и вредителями, оценки засухо-, -морозо-, солеустойчивости (показатели газообмена, биоэлектрические потенциалы, градиенты температур, скорость водного тока и др.); теоретических физиологических и биохимических основ хранения урожая, снижения его потерь с использованием инертных газов, полупроницаемых мембран, консервантов и др.; изучения потребности оптимальных режимов и способов облучения отдельных видов и сортов растений в сооружениях защищенного грунта в овощеводстве, в селекционном процессе; изучения процессов и механизмов распределения ассимилянтов в онтогенезе растений в целях направленного формирования урожаев. Как фундаментальная область знаний физиология растений служит также теоретической основой биотехнологии и биоинженерии растений.

3.История возникновения физиологии растений.Физиология обязана своим возникновением потребностям медицины, а также стремлению человека познать себя, сущность и проявления жизни на различных уровнях ее организации. Потребность сохранения жизни человека была на всех этапах его развития, и уже в древние времена формировались элементарные представления о деятельности организма человека, являясь обобщением накопленного опыта человечества. Наблюдения за жизнедеятельностью организма производились с незапамятных времен. За 14-15 веков до н. э. в Древнем Египте при изготовлении мумий люди хорошо знакомились с внутренними органами человека. В гробнице врача фараона Унаса изображены древние медицинские инструменты. В Древнем Китае только по пульсу удивительно тонко различали до 400 болезней. В IV-V веке до н.э. там было развито учение о функционально важных точках тела, которое в настоящее время явилось основой для современных разработок рефлексотерапии и иглоукалывания, Су-Джок терапии, тестирования функционального состояния скелетных мышц спортсмена по величине напряженности электрического поля кожи в биоэлектрически активных точках над ними. Древняя Индия прославилась своими особыми растительными рецептами, воздействием на организм упражнениями йоги и дыхательной гимнастики. В Древней Греции первые представления о функциях мозга и сердца высказывали в IV-V веке до н. э. Гиппократ (460-377 г. до н. э.) и Аристотель (384-322 до н. э.), а в Древнем Риме во II веке до н. э. -- врач Гален (201 -131 г. до н. э.). Однако, как экспериментальная наука, физиология возникла в XVII веке нашей эры, когда английский врач В. Гарвей открыл круги кровообращения. В этот же период французский ученый Р. Декарт ввел понятие рефлекс (отражение), описав путь внешней информации в мозги обратный путь двигательного ответа. Работами гениального русского ученого М. В. Ломоносова и немецкого физика Г. Гельм-гольца о трехкомпонентной природе цветного зрения, трактатом чеха Г. Прохазки о функциях нервной системы и наблюдениями итальянца Л. Гальвани о животном электричестве в нервах и мышцах отмечен ХVIII век. В Х1Хвекеразработаны представления английского физиолога Ч. Шеррингтона об интегративных процессах в нервной системе, изложенные в его известной монографии в 1906 г. Проведены первые исследования утомления итальянцем А. Моссо. Обнаружил изменения постоянных потенциалов кожи при раздражениях у человека И. Р. Тарханов (феномен Тарханова). В XIX в. работами «отца русской физиологии» И. М. Сеченова (1829-1905) заложены основы развития многих областей физиологи и -- изучение газов крови, процессов утомления и «активного отдыха», а главное -- открытие в 1862 году торможения в центральной нервной системе («Сеченовского торможения») и разработка физиологических основ психических процессов человека, показавших рефлекторную природу поведенческих реакций человека ('Рефлексы головного мозга«, 1863 г.). Дальнейшая разработка идей И. М.Сеченова шла двумя путями. С одной стороны, изучение тонких механизмов возбуждения и торможения проводилось в Санкт-Петербургском Университете Н. Е. Введенским (1852-1922). Им создано представление о физиологической лабильности как скоростной характеристике возбуждения и учение о парабиозе как общей реакции нервно-мышечной ткани на раздражение. В дальнейшем это направление было продолжено его учеником А. А. Ухтомским (1875-1942), который, изучая процессы координации в нервной системе, открыл явление доминанты (господствующего очага возбуждения) и роль в этих процессах усвоения ритма раздражений. С другой стороны, в условиях хронического эксперимента на целостном организме, И. П. Павлов (1849-1936) впервые создал учение об условных рефлексах и разработал новую главу физиологии -- физиологию высшей нервной деятельности. Кроме того, в 1904 г. за свои работы в области пищеварения И. П. Павлов, одним из первых русских ученых, был отмечен Нобелевской премией. Физиологические основы поведения человека, роль сочетанных рефлексов были разработаны В. М. Бехтеревым. Крупный вклад в развитие физиологии внесли и другие выдающиеся отечественные физиологи: основатель эволюционной физиологии и адаптологии академик Л. А. Орбели, изучавший условно-рефлекторные влияния коры на внутренние органы акад. К. М. Быков, создатель учения о функциональной системе акад. П. К. Анохин, основатель отечественной электроэнцефалографии -- акад. М. Н.Ливанов, разработчик космической физиологии -- акад. В. В. Ларин, основатель физиологии активности -- Н. А. Бернштейн и многие др. В области физиологии мышечной деятельности следует отметить основателя отечественной физиологии спорта -- проф. А. Н. Крестовникова (1885-1955), написавшего первый учебник по физиологии человека для физкультурных вузов страны (1938) и первую монографию по физиологии спорта (1939), а также широко известных ученых -- проф. Е. К. Жукова, В. С. Фарфеля, Н. В. Зимкина, А. С. Мозжухина и многих др., а среди зарубежных ученых -- П.-О.Астранда, А. Хилла, Р. Гранита, Р. Маргария и др.

4.Структурно-функциональная организация эукариотической клетки.Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе. В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.

5.Типы клеточной организации.В природе существует значительное разнообразие клеток, различающихся по размерам, форме, химическим особенностям. Число же главных типов клеточной организации ограничено двумя. Выделяют прокариотический и эукариотический типы с подразделением второго на подтип, характерный для простейших организмов, и подтип, характерный для многоклеточных. Эукариоты появились среди обитателей планеты около 1, 5 млрд. лет назад. Отличаясь от прокариот более сложной организацией, они используют в своей жизнедеятельности больший объем наследственной информации. Так, общая длина молекул ДНК в ядре клетки млекопитающего составляет примерно 2-5·109 пар нуклеотидов, т.е. в 1000 раз превосходит длину молекулы ДНК бактерии. Клеткам прокариотичечкого типа свойственны малые размеры (неболее 0,5—3,0 мкм в диаметре или по длине), отсутствие обособленного ядра, так что генетический материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, которая лишена основных белков - гистонов (гистоны являются белками клеточных ядер). Благодаря значительному количеству диаминокислот аргинина и лизина гистоны имеют щелочной характер. Различия прокариотических и эукариотических клеток по наличию гистонов указывают на разные механизмы регуляции функции генетического материала. В прокариотических клетках отсутствует клеточный центр. Не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток из материнской (время генерации), сравнительно мало и исчисляется десятками минут. К прокариотическому типу клеток относятся бактерии и синезеленые водоросли.