Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект ТБНГС (1-5) 07.doc
Скачиваний:
90
Добавлен:
26.09.2019
Размер:
1.75 Mб
Скачать

4.2.3. Реактивно-турбинные агрегаты

Для бурения верхних интервалов скважин диаметром 0,394 - 1,02 м применяют реактивно-турбинные агрегаты, у которых два турбобура смонтированы параллельно и жестко соединены между собой.

Д ля бурения скважин в горнорудной промышленности используют реактивно-турбинные агрегаты с тремя и четырьмя турбобурами, соединенными параллельно. Такими агрегатами бурят скважины диаметром от 1,26 до 5 м.

На рис. 4.5. показан реактивно-турбинный агрегат для бурения скважин диаметром 1,02 м. Этот агрегат имеет: переводник 1, соединяющий его с бурильной колонной, траверсу 2, скрепляющую верхние части агрегата и подводящую жидкость к двум турбобурам, турбобуры 3, соединенные в средней части полухомутами 4, грузы 5,6 и 7, плиту 8, две разрезные втулки 9, кольца 10, нижнюю плиту 11 и стяжки 12. К валам турбобуров присоединены долота.

При бурении агрегат вращается бурильной колонной вокруг ее оси, а долота совершают как бы планетарное вращение вокруг осей турбобуров и оси скважины, разрушая ее забой. Нагрузка на забой создается грузами 5, 6 и 7. Разбуренная порода выносится циркулирующим потоком бурового раствора, подаваемого в скважину насосами.

Для бурения скважин с помощью РТБ используются обычные буровые установки.

4.3. Характеристика турбобура

Рабочая характеристика турбины турбобура определяется частотой вращения вала п, крутящим моментом М на его валу, развиваемой мощностью N, перепадом давления р и гидравлическим коэффициентом полезного действия η количеством бурового раствора Q, прокачиваемого через турбину. В процессе бурения вследствие изменения момента сопротивления на долоте и количества прокачиваемого раствора все параметры турбобура меняются.

Крутящий момент на валу турбины возникает в результате взаимодействия потока жидкости с лопатками статора и ротора, В расчетах принимают, что в каналах ротора и статора турбины жидкость движется цилиндрическими слоями и не влияет на другие слои в радиальном направлении. Течение жидкости в цилиндрическом слое рассматривается в теории турбин, разработанной в прошлом веке инженером Эйлером. Согласно этой теории, в проточной части турбины протекает бесчисленное число цилиндрических слоев жидкости, а в каждом слое имеется множество струек или линий тока жидкости. Скорости движения струек в каждом цилиндрическом слое различны как в радиальном, так и в окружном направлении.

Для упрощения расчетов принимают, что эквивалентная струйка имеет некоторую среднюю скорость, соответствующую усредненным параметрам жидкости на расчетном диаметре Dср лопаток турбобура.

Осевая скорость потока cz жидкости (в м/с) в любом поперечном сечении турбины вычисляется по уравнению расхода

сz = Q/F = Q/πDcp l, (4.1)

где Q - расход жидкости, м3/с; F - площадь поперечного сечения решетки турбины, м2; l - радиальная длина лопаток, м.

Для обеспечения протекания жидкости через турбину с определенной скоростью надо на входе в турбину иметь напор, который расходуется как на полезную работу, так и на преодоление вредных сопротивлений.

В турбобурах применяются многоступенчатые аксиальные турбины с густой решеткой специфичной конструкции и в теории турбин общего назначения эти турбины не рассмотрены. В 1936 г. инженером П. П. Шумиловым впервые была рассмотрена теория этих турбин и была предложена циркулятивная теория аксиальных многоступенчатых турбин, что позволило правильно подойти к проектированию турбин для турбобуров с учетом условий их работы. На основе анализа степени циркулятивности (си) турбины была предложена методика выбора наиболее важного параметра турбобура - соотношения вращающего момента М и частоты вращения п при работе на оптимальном режиме, т. е. отношение М/п.

Построение специальной циркулятивной теории аксиальных турбин потребовало введения некоторых понятий и обозначений к ранее существовавшим в теории турбин. Для всех величин, относящихся к месту входа потока жидкости в каналы ротора, принимаются индексы «1», а к месту выхода - индексы «2». Абсолютные скорости потока жидкости обозначаются буквой с, относительные w и переносные (окружные) и.

Рассмотрим изменение скоростей потока жидкости в лопастной системе многоступенчатой осевой турбины турбобура. Абсолютная скорость потока с может быть разложена на скорости в трех направлениях: осевом сz, тангенциальном (окружном) и и радиальном. Однако так как размер лопастей турбин турбобуров мал по сравнению со средним диаметром турбины, можно пренебречь изменениями в потоке жидкости вдоль радиуса и рассмотреть планы скоростей по двум осям: на направлении переносной скорости и на цилиндрической поверхности со средним диаметром Dср и в осевом направлении сz. На рис. 4.6. показаны планы скоростей в осевой решетке лопастей турбины.

Окружная скорость на среднем диаметре Dср л опаток u = πDсрn.

Конструктивные углы наклона профиля лопаток на выходе статора обозначим α1, на входе α2, на входе ротора β1 и на выходе β2. В турбинах турбобуров применяют густые решетки и угол наклона α1 абсолютной скорости с1, приблизительно равен углу наклона лопастей статора.

Направление относительной скорости w1, зависит от соотношения скоростей u1 и c1 Построим треугольник скоростей в координатах u2 и c1 в точке истечения из ротора на входе в статор нижележащей ступени (координаты u2 = u1 и cz2 = cz1). Относительная скорость истечения жидкости с лопатки ротора направлена под углом β2 между направлением кромки профиля лопатки ротора и вектором окружной скорости. На рис.4.6, б показано совмещение этих двух треугольников скоростей, по которым можно судить об изменении циркуляции потока.

При движении поток жидкости направляется в каналы статора, неся с собой определенный запас энергии, представленный в виде давления. По всей высоте канала статора происходит трансформация давления в скоростной напор. При этом весь поток к концу канала статора вследствие поворота лопаток ротора начинает вращаться вокруг оси турбины. Статор вырабатывает в потоке к моменту его истечения винтовой вихрь, осью которого является ось турбины, а напряжение вихря потока зависит от скорости циркуляции его вокруг этой оси.

С корость циркуляции потока, созданная в статоре

(4.2)

С корость циркуляции потока в роторе

(4.3)

где проекции скоростей потока c1u = c1cosα1; c2u = c2cosα2; абсолютные скорости с1 = cz/sinα1, c2 = cz = cz/sinα2.

Вращающийся ротор турбины, принимая винтовой вихрь, снижает величину его напряжения, создавая некоторый вращающийся момент. Лопатки статора, закручивая поток вокруг оси турбины, воспринимают направленный в противоположную сторону реактивный момент и передают его на неподвижный корпус турбобура. В многоступенчатой аксиальной турбине напряжение вихря потока, отработанного в ступене ротора, равно напряжению вихря потока на входе в статор следующей расположенной ниже ступени и т. д.

Эффективная мощность турбины пропорциональна суммарному возбужденному в ступенях ротора крутящему моменту, умноженному на угловую скорость вращения ротора. Таким образом, чем больше амплитуда изменения давления потока в ступенях статора и ротора, тем больше создаваемый на роторе рабочий момент и тем ниже можно получить угловую скорость вращения вала турбины при одной и той же ее мощности.

При небольшом отношении радиальной ширины каналов турбины к среднему радиусу rср можно считать, что средний момент скорости по сечению равен среднему моменту скорости по окружности радиусом rср. Тогда из уравнений теории турбин Эйлера получим приближенный момент, развиваемый одной ступенью турбины (в Н·м)

(4.4)

где ρ - плотность жидкости, кг/м3; Q - расход жидкости, м3/с; rср - средний радиус ступени, м.

Мощность турбины (в Вт)

(4.5)

где ω = πn/30 - угловая скорость ротора турбины, с-1; п - частота вращения ротора, об/мин.

Мощность, развиваемая одной ступенью турбобура,

где рст - эффективный используемый перепад давления на ступени турбины, МПа,

(4.6)

Для турбобуров с числом ступеней k мощность и вращающий момент будут в k раз больше.

Для тихоходных турбин турбобуров с большим вращающимся моментом требуется создание значительной амплитуды колебания циркуляции, а, следовательно, большой разности проекций скоростей потока

с1u—с2u.

Для оценки этих качеств турбобуров введены понятия:

к оэффициент циркулятивности турбин

(4.7)

(и - окружная скорость потока);

к оэффициент расхода ступени

(4.8)

(cz - осевая скорость потока).

С увеличением разности проекций скоростей потока возрастает вращающий момент, развиваемый каждой ступенью; с уменьшением окружных скоростей снижается частота вращения.

Высокий коэффициент циркулятивности си имеют тихоходные турбины с большим вращающим моментом. Быстроходные турбины имеют низкий коэффициент циркулятивности и небольшой вращающий момент. В современных турбобурах применяют высокоциркулятивные турбины с небольшим расходом, но при высоком напоре.

В реальных условиях поток жидкости в каналах турбин турбобуров неодинаков и неоднороден. При работе турбобура скорость и давление жидкости в любой точке потока изменяются без определенной закономерности, что вызвано неравномерностью нагрузки на валу при бурении и колебаниями подачи насосов. Форма же лопаток статора и ротора турбины постоянна и она должна быть такой, чтобы обеспечивать достаточно высокий к.п.д. при различных режимах работы.

При изменении скоростей потока у входа в каналы ротора и выхода из него изменяются стороны треугольников скоростей. В зависимости от конструкции турбины все стороны треугольника скоростей, т. е. векторов абсолютных, относительных и окружных скоростей могут изменяться либо пропорционально, либо непропорционально. В последнем случае нет подобия между геометрическими и динамическими треугольниками скоростей. Турбина будет работать в режиме с низким к. п. д. вследствие ударного течения вихревого потока жидкости. Наиболее благоприятен безударный режим без интенсивного вихреобразования на лопатках.

При замедлении вращения происходит вихреобразование с тыльной стороны профиля (зона S на рис.4.6), а при увеличении скорости и вихреобразование происходит на лицевой стороне лопатки (зона S'). Наиболее благоприятные условия для уменьшения гидравлических потерь обеспечиваются при плавном и безотрывном обтекании лопатки потоком с обеих сторон.

Характеристика турбин при постоянном расходе жидкости показана на рис. 4.7 кривыми зависимости момента М, перепада давления р, мощности N и к. п. д. η от частоты вращения п при постоянном значении расхода жидкости Q с определенными свойствами (плотность ρ и вязкость μ). Для построения кривых используются формулы (4.4) - (4.6). По этим формулам могут быть определены характеристики каждой ступени, а характеристики всего турбобура пропорциональны числу ступеней k.

Гидравлический к.п.д. пропорционален мощности

(4.9)

Р ежим работы турбобура при максимальном к.п.д. ηmах называется оптимальным. Наиболее устойчивая и эффективная работа турбобура при экстремальном режиме, т.е. наибольшей мощности. В многоступенчатых турбинах экстремальный и оптимальный режимы почти совпадают. Гидравлический к.п.д. турбины определяется потерей мощности при прохождении жидкости в каналах турбины. Эти потери зависят от шероховатости поверхности лопаток, их формы, утечек в зазорах между дисками турбины.

Характеристики турбин различных конструкций неодинаковы, поэтому существует много модификаций и конструкций турбобуров. Для снижения частоты вращения и перепада давления

Для расчета характеристики турбины могут использоваться преобразованные формулы, определяющие крутящий момент и перепад давления на режиме максимальной мощности:

(4.10)

(4.11)

где р – перепад давления на турбине; η – КПД.

П.П. Шумилов установил следующие основные закономерности, характеризующие влияние количества бурового раствора на работоспособность турбины.

1. Частота вращения турбины пропорциональна количеству прокачиваемой жидкости

(4.12)

т.е. при увеличении количества прокачиваемого раствора, например, в 3 раза жидкости частота вращения турбины увеличивается также в 3 раза, и наоборот.

2. Перепад давления на турбине пропорционален квадрату количества раствора

(4.13)

.

Таблица 4.1.

Технические характеристики турбин,

выпускаемых отечественной промышленностью

Тип

турбины

Диаметр

турбобура, мм

Расход

раствора, л/с

Тормозной

момент, Нм

Частота

вращения холостого хода, с-1

Перепад давления рабочий, МПа

Максимальный

перепад

давления, МПа

Макси-мальный

КПД, %

30/16,5-240

240

40

24,58

17,3

0,0262

0,0262

63,8

А9КСА

240

40

22,02

14,0

0,0252

0,0324

40,4

26/16,5-196

195

28

8,07

13,9

0,0113

0,0113

55,3

А7Н4С

195

28

12,59

18,5

0,0287

0,0363

40,5

24/18-195ТЛ

195

28

4,74

8,2

0,0048

0,0048

47,4

24/18-195ТПК

195

28

5,63

8,1

0,0057

0,0057

42,3

А7П3

195

28

16,77

18,3

0,0320

0,0363

38,2

А7П36К

195

28

17,69

19,8

0,0259

0,0296

52,8

21/16,5-195АТЛ

195

28

16,32

23,2

0,0263

0,0341

70,6

ТД-195АТЛ

195

28

16,92

29,2

0,0395

0,0433

65,6

Т195 К

195

28

9,50

13,8

0,0139

0,0139

50,8

28/16-172

172

24

8,22

20,5

0,0239

0,0239

44,2

А6КСА

164

20

6,22

18,1

0,0194

0,0232

39,8

Примечание: Число ступеней -1. Плотность бурового раствора -1000 кг/м3 (техническая вода).

3. Вращающий момент турбины, как и перепад давления, пропорционален квадрату количества прокачиваемого раствора.

(4.14)

4. Мощность турбины пропорциональна кубу количества прокачиваемого раствора

, (4.15)

т.е. при увеличении количества прокачиваемого раствора, например, в 2 раза мощность турбины увеличивается в 8 раз, и наоборот перед соединением секций турбобура на буровой их проверяют. Элементы турбобура с видимыми дефектами и повреждениями к сборке не допускаются.

Поступивший из турбинного цеха турбобур допускается к эксплуатации при следующих условиях:

  • осевой люфт 2 мм для турбобуров с резинометаллической осевой опорой и не более 0,4 мм с шаровой осевой опорой;

  • величина подъема вала в верхних секциях находится в соответствии с указанной в инструкции;

  • перепад давления в турбобуре соответствует паспортному;

  • все резьбовые соединения герметичны при прокачке раствора, расход которого соответствует паспортному.

Перед спуском в скважину вал турбобура проверяют на легкость вращения, проворота его ключом при моменте не более 200 Н·м. Целесообразно перед спуском турбобур опробовать над столом ротора. Запускаться он должен при давлении 1 - 1,5 МПа. Перепад давления необходимо фиксировать в его паспорте и буровом журнале. При опробовании турбобур должен работать без рывков и плавно останавливаться при прекращении подачи раствора.

В процессе работы необходимо следить за изменением люфта вала. В процессе бурения турбобур может остановиться вследствие перегрузки, снижения подачи насосов или неисправности. В первых двух случаях необходимо попытаться турбобур запустить, разгрузив опору, приподняв его над забоем, и довести подачу до установленной паспортом. Если запустить не удалось, турбобур поднимают на поверхность и устраняют неисправность или направляют на ремонт.

Отработанный турбобур укладывают на мостки и на корпусе делают пометку «на ремонт». К нему прикладывают заполненный паспорт, в котором указывают номер буровой, даты начала и конца его работы, время работы в часах, интервал бурения, параметры бурового раствора и причины отказа.