Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UChIM_BLEAAA.docx
Скачиваний:
8
Добавлен:
25.09.2019
Размер:
336.43 Кб
Скачать

БИЛЕТ 1

1. ДНК является носителем наследственной информации.Состоит из 2 спирально закрученных нитей. Содержит . аденин, тимин, цитозин и гуанин. Уникальные послед.нуклеотидов это неповторяющиеся цепи нуклеотидов. Повторяющиеся нуклеотиды-не связаны с синтезом белка. Этот класс включает в себя разнообразные гены, в том числе и гены синтеза транспортных рнк и белков, входящих в состав рибосом и хроматина.

2. Первые живые организмы появились прокариоты в архейскую эру.Затем появились анаэробные организмы. Затем аутотрофные (фотосинтез.) бактерии. Это способствовало возможности возникновения аэробных организмов. Затем появились гетерогтрофы (в палеозойскую эру). ОВР заключается в химическом превращении веществ в процессе жизнидеят. Организма. Газообмен-поддержание постоянного обмена организмов с окр.средой в процессе дыхания и фотосинтеза. Концентр. Фун-ия – заключается в биогенной миграции атомов, которые вначале концентрируются в живых организмах в процессе синтеза орг.в-в, а после отмирания переходят в неживую среду.

3. Биоритмы – регулярные качественные и обусловленные ими количественные изменения параметров жизнедеятельности на всех уровнях организации живого. Эпифиз и супрахиазматические ядра гипофиза являются регуляторными центрами организма. Поэтому они играют главную роль в синхронизации (восстановлении) циркадианных ритмов.

Десинхронизация – состояние двух или более, ранее синхронизированных, ритмических переменных, переставших показывать те же частоты и акрофазные взаимоотношения и демонстрирующие изменение временных взаимосвязей. Десинхроноз – патологическое состояние, вызванное внешней или внутренней десинхронизацией биоритмов.

БИЛЕТ 2.

1. Единство органического мира обеспечивает: Клетка — единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет. Клетка — единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определённое целостное образование. Ядро − главная составная часть клетки (эукариот). Новые клетки образуются только в результате деления исходных клеток. Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток. Эволюция организмов – процесс приспособительного исторического развития живых форм на всех уровнях организации живого. В настоящее время успешное развитие некоторых областей медицины невозможно без использования принципов эволюционной теории. В первую очередь это касается эпидемиологии, медицинской генетики и вирусологии. Принципы эволюционной биологии позволяют установить механизмы появления и распространения инфекционных болезней, анализировать эволюцию устойчивости патогенных бактерий и вирусов к лекарственным средствам.

2. Экологический гомеостаз наблюдается в климаксовых сообществах с максимально возможным биоразнообразием при благоприятных условиях среды. В нарушенных экосистемах, или субклимаксовых биологических сообществах — как, например, остров Кракатау, после сильного извержения вулкана в 1883 — состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.

Правило Бергмана.У животных одного вида размеры тела больше в холодных частях ареала и меньше в теплых его частях, размер тела увеличивается с широтой местности. Правило отражает адаптацию животных к поддержанию постоянной температуры тела в различных климатических условиях: у более крупных особей отношение поверхности тела к его объему меньше, чем у мелких, поэтому и меньше расходуют энергии для поддержания той же температуры тела. Исключение: роющие млекопитающие. Правило Аллена. У теплокровных животных населяющих более теплые участки и ареалы выступающие части тела меньше, чем у представителей теплых ареалов. Исключение: длина клюва у птиц определяется характером питания.

Экологическая популяция – население биотопа каким-то биоценозом. Главный критерий популяции – панмиксия – свободный обмен генетической информации.

Экологическая дифференциация человечества подразумевает географическую приуроченность разных признаков организма и свидетельствует об устойчивых приспособительных реакциях у человечества. Особенности:Независимо от расовой и этнической принадлежности реакция организма на одни и те же воздействия идет в одном и том же направлении.

Норма реакции осуществляется в пределах границ, присущих этнической группе, что говорит о генетической природе реакции.Наличие у всех человеческих популяций компенсаторных реакций по отношению к их ОС.Адаптации у человека проявляются в 2 формах:

Неспецифическая, связанных с общим повышением иммунных свойств и усилением устойчивости организма к неблагоприятным факторам.

Специфическая, узко направлена на приспособление к определенным условиям ОС (на холод, повышение теплопродукции).

Основные типы: Арктический. Характерно приспособление к влажному холодному климату и кислородной недостаточности. Повышение газообмена, высокое содержание иммуноглобулина и холестерина. Уменьшение длины конечностей.

Жители пустыни. Сухость, высокая температура. Повышенная теплоотдача, за счет испарения и длинные конечности и истощенное тело.Жители высокогорья. Пониженная температура, гипоксия. Широкая грудная клетка, большая ЖЕЛ, больше эритроцитов, выше уровень гемоглобина, выше уровень окислительных ферментов.

При адаптации человека к контрастным природно-климатическим условиям высоких широт происходит изменение всех видов обмена: белков, жиров, углеводов, витаминов и биоэлементов. Организм переходит на новый уровень гомеостаза, для которого характерны иные нормы химического состава внутренней среды, иные нормы его здоровья. Перестройка основных видов обмена меняет в организме характер «метаболического обуслов-

ливания». Это отражается на работе (реактивности) таких систем, как система воспаления или иммунитета, что способствует хронизации воспалительных процессов и большей подверженности инфекционной патологии. Инициирующую роль в адаптационных изменениях играют высшая и вегетативная нервные системы, а также подкорковые нейрогуморальные структуры.

В связи с разработкой в Тюмени газовых месторождений на севере Тюменской области, приток пришлого населения резко увеличился. Лица пребывающие на севере испытывают: адаптационное напряжение, климатический дискомфорт.

Существует 2 вида организации труда:

Вахтовый. Радиус доставки рабочих 10-100км

Экспедиционно-вахтовый. Радиус доставки 1000 км. Более опасный, смена часовых поясов.

Задачи медиков: изучение, людей при отправке, резервных возможностей организма. Биоритмологический подход.

3.Клаас жгутиковые-характерно наличие 1 или нескольких жгутиков , служащих для передвижения. Гетеротрофы. Большинство обитает в морских и пресных водоёмах. Многи е перешли к паразитичпескому образу жизни. Медицинский интерес представляют жгутиковые, паразитир. В организме человека. Trypanosoma brucei gambience, leishmania tropica, minor,mania,major. Профилактика таких заболеваний: уничтожение переносчиков (муха це-це)б лекарств.препараты, предохраняющие заражение после укуса мухи. Диагностика и патогенез: у больного т рпианосомозом наблюдается мышечная слабость, истощение, депрессия, сонливость.

БИЛЕТ 3.

1. Ответственным материальным субстратом за передачу наследственных болезней они считают генопатии— патологию генов, в которую включаются патологические мутации генов родителей и предков пробанда. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех типов РНК: информационной (иРНК) (ее также называют матричной РНК, мРНК), транспортной (тРНК) и рибосомальной (рРНК). При этом генетическая информация копируется с матрицы ДНК на мРНК в ходе транскрипции, а затем мРНК используется как матрица для синтеза белков в ходе трансляции. Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии. Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включает трансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов переводится в последовательность остатков аминокислот. транспорт осуществляется через мембраны.

2. В генетике человека популяцией можно назвать группу людей, занимающих одну территорию и свободно вступающих в брак. Могут быть географические, религиозные, социальные преграды вступления в брак. Крупные популяции человека состоят из нескольких антропологических групп, отличающихся по происхождению и занимающих большую территорию.

Человечество несет в себе генетический груз возникших мутаций, среди которых немало рецессивных, летальных, полулетальных и ряда наследственных, проявляющиеся лишь в гомозиготном состоянии. Проблема генетического груза имеет большое значение для медицины. Для медико-генетичесих консультантов важно иметь представление о насыщенности генами наследственных болезней населения населяющих те или иные территории. Она важна для решения вопроса о роли факторов окружающей среды в мутационных процессах и в охране ее от загрязнения. В изменении генофонда человеческих популяций не последняя роль принадлежит миграциям. С ними связано разрушение прежних границ браков, появление смешанных браков. Миграции ведут к изменению состава генов в популяциях из которых население эмигрировало, и в тех, куда оно иммигрировало.

3.группа vermes тип nematodes класс nemato

БИЛЕТ 4.

1. Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физическ Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия(гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях

ие (радиационное излучение), химические (гербициды) и биологические (вирусы). Мутации, возникающие в соматических тканях, получили название соматических мутаций. Соматические клетки составляют популяцию, образованную при бесполом размножении (делении) клеток. Соматические мутации обуславливают генотипическое разнообразие тканей, часто не передаются по наследству и ограниченные тем индивидуумом, в которого они возникли. Соматические мутации возникают в диплоидных клетках, поэтому проявляются только при доминантных генах или при рецессивных, но в гомозиготном состоянии. Чем раньше в эмбриогенезе человека возникла мутация, тем больший участок соматических клеток отклоняется от нормы. И наоборот, чем позже в процессе развития организм испытывает мутационное воздействие, тем меньший участок ткани, которая образуется из мутационной клетки. Например, окраска радужной оболочки глаза - белый или карий сегменты на голубой радужке - обусловлены соматической мутацией. Считают, что следствием соматических мутаций является раковое перерождение. Злокачественный рост вызывается канцерогенами, среди которых наиболее негативные - проникающая радиация и активные химические соединения (вещества), и хотя соматические мутации не наследуются, они снижают репродуктивные возможности организма, в котором возникли.

     Мутации, возникающие в гаметах или в клетках, с которых они образуются, получили название генеративных или терминальных мутаций. Чем раньше в половых клетках возникает мутация, тем больше будет доля половых клеток, которые будут нести новую мутацию. наибольшее количество мутаций в половых клетках возникает в овоцитах. Поскольку сперматогонии подвергаются постоянному делению, то среди них может происходить отбор против мутаций, обуславливающих вредный эффект, и частота мутаций снижается до периода половой зрелости. К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. 

Иммунитет — невосприимчивость, сопротивляемость организма инфекциям и инвазиям чужеродных организмов (в том числе — болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении. Иммунитет делится на врождённый и приобретенный.

Врождённый (неспецифический, конституционный) иммунитет обусловлен анатомическими, физиологическими, клеточными или молекулярными особенностями, закрепленными наследственно. Как правило, не имеет строгой специфичности к антигенам, и не обладает памятью о первичном контакте с чужеродным агентом[4]. Например:

Все люди невосприимчивы к чуме собак.

Некоторые люди невосприимчивы к туберкулёзу.

Показано, что некоторые люди невосприимчивы к ВИЧ.

Приобретенный иммунитет делится на активный и пассивный.

Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины.

Приобретенный пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорожденному с молозивом матери или внутриутробным способом.

Также иммунитет делится на естественный и искусственный.

Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания). А также пассивный при передаче антител ребёнку от матери.

Искусственный иммунитет включает приобретенный активный после прививки (введение вакцины) и приобретенный пассивный (введение сыворотки).

2. В настоящее время человечество стоит на пороге экокризиса. Современная экологическая ситуация характеризуется вступлением человека в эпоху экологического кризиса – это такое состояние среды обитания, которое вследствие произошедших в ней изменений оказывается непригодной для жизни людей, прежде всего продуцентов. Растения – посредники между солнцем и человеком.

Исходные причины экокризиса:

Стихийный рост промышленности, энергетики, транспорта.

Широкая химизация с/х и быта.

Быстрый рост народонаселения и урбанизация.

Ежегодно из недр извлекается более 100 млрд. различных пород, сжигается 1 млрд. тонн топлива.

Экологические программы. Ко всем экопрограммам предъявляется единый принцип мониторинга – комплексная система наблюдения, оценки и прогноза изменения состояния биосферы под влиянием человека. Этими вопросами занимаются некоторые учреждения ООН:

ЮНЕСКО – организация по вопросам образования, науки и культуры. Основа программы: научный подход ко всей деятельности человека.

МАГАТЭ – международная организации по радиологической защите.

ВОЗ – контроль за единим интегральным критерием качество среды.

ФАО – продовольственная и с/х организация. Контроль за рациональным использованием агробиогеоценозов.

МСОП – в основе программы лежит защита животных от вымирания, создание биосферных заповедников.

Существует 1 программа МБП (1964-1974) и вылилась программу МАВ (man and biosphere) – межправительственная программа по координированию фундаментальных исследований проблемы управления естественными ресурсами . принята на 16 сессии ген. конференции ЮНЕСКО, как продолжение МБП. Основа программы: осуществление во всех странах мира комплексных многолетних исследований влияния человека на среду. Программа включает 14 проектов:

Землепользование

Использование энергии

Производственно-промышленный комплекс

По инициативе ООН в 1972 установлен всемирный день охраны ОС (5 июня).

3. Сем-во: Muscidae

Вид: Musca domestica

Морфологические особенности: между коготками ее лапок находятся клейкие, покрытые волосками подушечки, ноги тоже покрыты волосками, к которым легко пристает грязь. Она серого цвета, ротовой аппарат лижуще-сосущий, благодаря чему она может сосать жидкую пищу и соскабливать хоботком сухие вещества. Обильно выделяемая слюна размачивает твердую пищу.

Особенности образа жизни и метаморфоз: обычным местом откладки яиц является гниющие вещества, кухонные отбросы, навоз, испражнения человека. Размножаются очень интенсивно (до 160 яиц за 1 раз). При благоприятных условиях через сутки из яиц выходят личинки, которые через 1-2 недели окукливаются, уже через месяц появляется новое поколение мух.

Эпидемиологическая роль: является механическим переносчиком болезнетворных организмов ( дизентерия, яйца гельминтов, цисты простейших), возбудителей брюшного тифа, холеры, туберкулеза, дифтерии.

Билет №5

Проблема трансплантации органов и тканей. Ауто- алло и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Искусственные органы.

Трансплантант — пересаживаемый участок

Донор — от кого пересаживается

Реципиент — кому пересаживается

Ауто — пересадка в пределах организма

алло — от другого организма в пределах вида

Главная проблема — отторжение пересаженных тканей ввиду действия имунной системы.

Следовательно встала задача иммунодепрессии — подавление имунной системы, облучение, введение гормонов надпочечников.

Искуственные органы

Созданы разл протезы, искуственное сердце, аппарат искуственной почки. Минус в том, что они очень громоздкие и требуют больших вложений денег.

Основные формы биологических связей в антропобиогеоценозах. Паразитизм как биологический феномен. Классификация паразитических форм животных.

Формы связей

Мутуализм — обоюдополезный

Синойкия — использование паразитом тело хозяина как жилище

Комменсализм — использование паразитом тело хозяина как жилище и в качестве источника питания

Паразитизм — отрицательный для одного из партнеров симбиоз

Паразитизм широко распостранен в природе. Паразитич явл все микроорганизмы, многие грибы. Паразиты встреч среди растений. Из животных паразитич образ жизни ведут членистоногие, черви, простейшие.

Паразиты делятся на экто- и эндопаразитов.

Характеристика класса жгутиконосцев. Природная очаговость лейшманиоза.

Характерно наличие жгутиков — выростов цитоплазмы. Прикрепляется жгутик к базальному зерну. Иногда между жгутиком и покровом тела находится перепонка — ундулирующая мембрана. Жгутиковые гетеротрофы. Многие ведут паразитический образ жизни.

Лейшманиоз встречается в странах с субтропическим климатом. Переносчиками является москит рода Phlebotomus. Естественным резервуаром для лейшманиоза служат грызуны. Если человек попадает в ареал, On он может заразиться.

Билет №6

Экспрессия генов в процессе биосинтеза белка. Геном человека.

Экспрессия гена в признак — это сложный этапный процесс, который можно изучать разными методами: электронной и световой микроскопией, биохимически и другими.

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза.

При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма.

Филогенетические связи в природе. Естественная классификация живых форм. Основные типы животного мира. Доказательства монофилии.

Общая характеристика п/т хелицероносных. Паукообразные.

Представители этого класса имеют два отдела тела: головогрудь и брюшко и шесть пар конечностей: хелицеры, педипальпы и четыре пары ходильных ног. Органами дыхания паукообразных являются мешковидные легкие и трахеи.

Медицинское значение имеют представители отрядов скорпионов Scorpiones, пауков Aranei, среди которых существует немало видов, ядовитых для человека, и клещей Acari.

БИЛЕТ № 7

1. Клетка – открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ. Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях – и хлоропластов.

2. Биоритмы - циклические колебания интенсивности и характера биологических процессов и явлений. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (биологические процессы у организмов, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.). Наука о биологических ритмах – хронобиология.Возраст — продолжительность периода от момента рождения живого организма до настоящего или любого другого определённого момента времени[1].

Обычно под словом «возраст» понимается календарный возраст (паспортный возраст, хронологический возраст), при котором не учитываются факторы развития организма. Наблюдаемые отличия индивидуальных особенностей развития организма от средних показателей послужили основанием для введение понятия «биологический возраст», или «возраст развития»[1].

3.Трихинелла заболевание трихиннелез размер самка 2-4 мм самец 1-2 мм личинка спарально закручена в известковой капсуле.

БИЛЕТ 8.

1. 2.ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Методы генной инженерии:

- метод секвенирования – определение нуклеотидной последовательности ДНК;

- метод обратной транскрипции ДНК;

- размножение отдельных фрагментов ДНК.

ГЕННАЯ ТЕРАПИЯ, лечение болезней путем введения пациенту здоровых ГЕНОВ вместо недостающих или поврежденных. Первый раз человека подвергли такому лечению в США в 1990 г. Это был четырехлетний ребенок, страдающий дефицитом редкого энзима, отсутствие которого разрушает иммунную систему человека. Исправление или замещение поврежденных генов производится по методам ГЕННОЙ ИНЖЕНЕРИИ. Здоровый ген вводят в какой-нибудь вирус (обычно переносчик легко поддающейся лечению инфекции) так, чтобы он был непосредственно нацелен на поврежденные клетки. С самого начала генная терапия была задумана как средство лечения наследственных заболеваний - муковисцидиоз или серповидная анемия, но также исследовались возможности применения метода для лечения других болезней, таких как рак, при которой ген поражается только спустя некоторое время. Хотя тысячи больных уже были излечены, главным образом в США, генная терапия еще не сказала своего слова. Не все из вводимых генов достигают цели, и не все, попавшие в поврежденную клетку, эффективно срабатывают. Существует также проблема использования вируса в качестве переносчика гена. Организм встречает вирус как «чужака», и у некоторых пациентов из-за этого наблюдается тяжелая иммунная реакция. Существует и теоретический риск того, что сам вирус может распространиться и вызвать рак.

2.Признаки типа «Членистоногие

1. Плотный хитиновый покров – воздухо- и водонепроницаемый. 2. Членистые конечности. 3. Сегментированность тела, что указывает на их родство и происхождение от древних кольчатых червей. 4. Появление отделов тела: головы, груди и брюшка. 

Болезни природно-очаговые

инфекционные заболевания человека, встречающиеся на определенных территориях, где природные, климатические условия и другие факторы обеспечивают циркуляцию возбудителя среди животных в течение неопределенно длительного времени.

облигатно-трансмиссивные — возбудители локализуются в крови и передаются человеку трансмиссивно, т. е. посредством кровососущих переносчиков;

факультативно-трансмиссивные — возбудители могут локализоваться в крови животных и человеку передаются в основном факультативно-трансмиссивной передачей;

нетрансмиссивные — болезни с некровяной локализацией возбудителей и нетрансмиссивной передачей. В классе зоонозов также выделяют группу болезней с локализацией возбудителей с вертикальной передачей — от родителей потомству.

Боле́знь Ла́йма (или боле́знь Ли́ма, клещево́й боррелио́з, Лаймборрелио́з) — инфекционное преимущественно трансмиссивное заболевание, обладающее большим полиморфизмом клинических проявлений и вызываемое по крайней мере тремя видами бактерий рода Borrelia, типаспирохет.[1] Borrelia burgdorferi доминирует как возбудитель болезни Лайма в США, в то время как Borrelia afzelii и Borrelia garinii — в Европе.

Болезнь Лайма — самая распространённая болезнь, передаваемая клещами в Северном полушарии. Бактерии передаются человеку через укус инфицированных иксодовых клещей, принадлежащих к нескольким видам рода Ixodes.[2] Ранние проявления болезни могут включать жар, головные боли, усталость и характерную кожную сыпь, называемую мигрирующая эритема (лат. erythema migrans). В некоторых случаях, в присутствии генетической предрасположенности, в патологический процесс вовлекаются ткани суставовсердце, а также нервная системаглаза. В большинстве случаев симптомы могут быть купированы антибиотиками, в особенности если диагноз и лечение проводятся на ранних стадиях развития болезни. Неадекватная терапия может привести к развитию «поздней стадии» или хронической болезни Лайма, когда болезнь становится трудноизлечима, становясь причиной инвалидности, или привести к смерти. Расхождения во мнениях насчёт диагностикитестирования и лечения болезни Лайма привели к двум различным стандартам ухода за больным.[3][4]

3. Токсоплазма (лат. Toxoplasma) — монотипный род паразитических протозоев, включающий, видимо, один вид — Toxoplasma gondii. Основные хозяева токсоплазм — представители семейства кошачьих. В качестве промежуточных хозяев выступают различные виды теплокровных животных, в том числе и людиТоксоплазмоз, болезнь, вызываемая токсоплазмой, обычно протекает у человека легко. Однако для плода, в случае если мать заразилась токсоплазмозом во время беременности, а также для человека или кошки спониженным иммунитетом эта болезнь может иметь серьёзные последствия, вплоть до летального исхода. Toxoplasma gondiiпринадлежит к типу Apicomplexa и является единственным описанным видом рода Toxoplasma. Тем не менее, высказывалась гипотеза, что на самом деле может существовать несколько видов токсоплазм[1].

БИЛЕТ № 9

1. . При характеристике восстановительных процессов следует исходить из учения И.П. Павлова о том, что процессы истощения и восстановления в организме (деятельном органе) тесно связаны между собой и с процессами возбуждения и торможения в ЦНС. Это положение полностью подтверждено экспериментальными исследованиями Г.В. Фольборта (1951), в которых была установлена тесная связь между процессами истощения и восстановления функциональных потенциалов в работающем органе. Показано также, чем больше энергетические траты во время работы, тем интенсивнее процессы их восстановления. Но если истощение функциональных потенциалов в процессе работы превышает оптимальный уровень, то полного восстановления не происходит. В этом случае физическая нагрузка вызывает дальнейшее угнетение процессов клеточного анаболизма. При несоответствии реакций обновления в клетках катаболическим процессам в организме могут возникать структурные изменения, ведущие к расстройству функций и даже повреждению клеток.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожиПтицыпериодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

2. Эколо́гия (от др.-греч. οἶκος — обиталище, жилище, дом, имущество и λόγος — понятие, учение, наука) — наука об отношениях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году в книге «Общая морфология организмов»

Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

3.

Комплекс механизмов, с помощью которых организм распознает и реагирует на  повреждающие или потенциально опасные внешние  воздействия называют иммунными реакциями, иммунитетом. Иммунная система защищает организм от чужеродных опасных воздействий, распознавая и отвечая на так называемые антигены. Антигены - это молекулы, обычно  белки, которые находятся на поверхности инородных клеток, вирусов, грибков, бактерий. Как антигены могут также  функционировать  частицы токсинов, химических веществ. Иммунная система читает информацию заложенную в антигенах как инородную, потенциально опасную для организма и запускает механизмы их разрушения, создавая особые клетки - антитела. Собственные клетки организма  тоже имеют  белки-антигены. Иммунная система обычно умеет различать их как свои и как правило  против них не реагирует.

Каждый человек  рождается с развитыми системами защиты, которые защищают его от антигенов опасных воздействий извне. С рождения существуют анатомические и химические барьеры для внешних и опасных структур, которые представляют собой так называемый неспецифический иммунитет.

Анатомическими  барьерами являются:

- рефлекторный кашель, слизистое отделяемое дыхательных путей,

- бактерицидные ферменты слез и кожных жиров,

- слизистое отделяемое из носа и  ушная сера,

- кожа,

- кислотный желудочный сок,

- моча

Химическими барьерами с рождения являются собственный интерферон и интерлейцина 1 (вызывает повышение температуры как защитный механизм). Кожа и дыхательные пути производят антимикробные пептиды, такие как бета - дефензина. Ферменты лизоцим и фосфолипаза бактерицидного действия находятся в слезной жидкости, слюне, материнском молоке.

Другим механизмом защиты и еще одним гуморальным барьером является реакция воспаления.

Воспалительная реакция  возникает, когда ткани организма повреждаются в результате инфекционного, травматического, токсического, термического и др. воздействия. Поврежденная ткань высвобождает из своих клеток такие химические вещества как гистамин, брадикинин, серотонин. Эти вещества вызывают повышение проницаемости сосудов в зоне повреждения, усиленный выход жидкости из сосудов и компонентов крови, имеющих защитные функции, провоцируя отек. Тем самым пораженный участок и находящиеся в нем инородные тела  как бы изолируются от других неповрежденных участков тела.

Клеточные барьеры.

Лейкоциты, белые клетки крови, и среди них фагоциты (макрофаги, нейтрофилы), мастоциты, еозинофилы, базофилы обнаруживают и уничтожают  опасные, инородные или ненужные  клетки

Пассивный иммунитет - заключается в передаче или введении готовых антител (атакующих антигены клеток).

- либо в кровью матери, уже их имеющих. В этом случае младенец  обычно сохраняет уже готовую защиту на внешние инфекции в течении 6-12 мес. Новорожденные обычно  не имеют контакта с микроорганизмами и  в теории должны рождаются беззащитными против инфекций. В течение беременности антитела-иммуноглобулины матери передаются  плоду через плаценту. Антитела содержаться и в молоке матери. Эти материнские антитела предохраняют младенцев от инфекций до момента, когда его организм сам может синтезировать собственные антитела.

- либо введением фармакологических препаратов, содержащих антитела к той или иной инфекции для экстренной помощи организму и сформированных в организме другого человека или животного (например, введение гаммаглобулина для профилактики гепатита А, антитоксина  столбняка и др). В этом случае организм больного получает немедленную защиту, но она  не долгая.

Приобретенный иммунитет - это способность защите, 

которая развивается в течение всей жизни при взаимодействии с различными чужими антигенами. Иммунная система создает ответные защитные реакции, специфичные для каждого отдельного антигена.

Компоненты иммунной системы в крови человека.

Этими компонентами являются белые клетки крови (лимфоциты), химические вещества и белки, такие как антитела и интерферон. Некоторые из этих компонентов прямо атакуют чужие антигены, другие - обеспечивают и контролируют их  работу. Среди лимфоцитов различают лимфоциты В, которые производят антитела, захватывающие инородный антиген и способствующие  разрушению их иммунными клетками. Другие лимфоциты  - лимфоциты Т либо прямо атакуют инородные антигены - клетки убийцы, либо контролирует ответ иммунной системы, выделяя интерлейцин. По мере своего роста и развития в организме лимфоциты учатся отличать собственные антигены от инородных.

Информация об иммунологическом ответе на определенный антиген сохраняется в организме даже после его уничтожения Это явление называется в иммунологии иммунной памятью и позволяет в будущем развивать быструю и сильную атаку, если этот антиген будет обнаружен вновь. Когда лимфоциты В и Т при развитии иммунного ответа активируются и начинают размножаться, некоторая часть их берет на себя функцию памяти. 

Эти клетки помнят каждый антиген, с которым когда то сталкивался организм и при повторном его внедрении быстро запускают мощную защитную реакцию с большим количеством антител.

Свойства иммунных реакций организма позволили иммунологии вызывать их искусственным способом посредством вакцинации (активной  иммунизации). Принцип вакцинации заключается во введении в организм искуственно ослабленного антигена, чтобы спровоцировать  развитие антител против него, но без риска вызвать заболевание. Иммунологическая память на этот антиген в некоторых случаях остается на всю жизнь.

С учетом того, что инфекционные заболевания остаются главной причины человеческой  смертности вакцинация явилась одним из самых важных для человечества открытий иммунологии и медицины в целом.

БИЛЕТ № 10

1. Комбинативная изменчивость — изменчивость, которая возникает вследствие рекомбинации генов во время слияния гамет. Основные причины:

независимое расхождение хромосом во время мейоза;

случайная встреча половых гамет, а вследствие этого и сочетания хромосом во время оплодотворения;

рекомбинация генов вследствие кроссинговера.

2. В эволюции человека выделяют две ступени: 1) австралопитековые, древнейших людей; 2) человек разумный. Геккель дал архантропам название питекантроп. Питекантропа нашли на острове Ява. Длина тела 170 см, объем черепной коробки – 900 см3. Строение черепа – низкий свод, мощный надглазничный валик. В Китае были найдены остатки синантропа, живший 500 – 600 тыс. лет назад. В строении мозгового и лицевого отделов черепа архантропов следующие черты: покатый лоб, высокое надбровье и мощный надглазничный валик, низкий свод черепа. Следующий этап эволюции связан с неандертальцами. Они жили 100 – 30 тыс. лет назад и обладали более прогрессивными чертами. Рост мужчин был 155 – 165 см, объем мозга 1400 см3. Они занимались охотой и рыболовством, строили жилища и одевались в шкуры, они научились добывать огонь. Известны две ветви неандертальцев – классическая и палестинская. Классический неандерталец отличался массивным скелетом. Палестинский неандерталец обладал менее массивным скелетом и большими размерами головного мозга. Человек разумный или кроманьонец появился на Земле 50 – 40 тыс. лет назад. В этот период человек расселялся по всей суше. Он выделяется прогрессивными особенностями: более сильным развитием височной и лобной долей мозга, отсутствует массивный надглазничный валик, выступает подбородок, высокий лоб. Неантропы были людьми высокого роста. Средний рост мужчины составлял 180 см, женщины 160 см. Существенную роль играл переход к прямохождению. У женского организма появился ряд защитных приспособлений: 1) изменение биомеханики родов; 2) появление родничка; 3) специфика строения лобкового сращения. Палестинские неандертальцы – особая ветвь на пути антропогенеза, т. к. они прибрели способность сопереживать своим сородичам. Можно выделит 4 этапа антропогенеза: 1) австралопитеки; 2) архантропы – питекантроп, синантроп; 3) палеоантропы – неандертальцы; 4) неоантропы – кроманьонцы и современные люди.

систематика человека Надцарство Эукариоты Eukaryota Царство Животные Animalia Подцарство Многоклеточные Metazoa Тип Хордовые Chordata Подтип Позвоночные Vertebrata Класс Млекопитающие Mammalia Подкласс Живородящие Theria Инфракласс Плацентарные Eutheria  Отряд Приматы Primates Подотряд Высшие приматы или Обезьяны или Антропоидные Anthropoidea Инфраотряд (Секция) Узконосые обезьяны Catarrihini Надсемейство Гоминоиды (Человекоподобные) Hominoidea Семейство Гоминиды (Человекообразные) Hominidae Род Человек Homo Вид Человек разумный Homo sapiens Подвид Homo sapiens sapiens

3. Эхинококк и альвеококк - паразиты, которыми человек заражается при контакте с животными-носителями, при питье зараженной воды, заглатывании земли с ягодами и овощами. Личинки из кишечника током крови разносятся по всему организму, попадая в печень, легкие, почки, кости, мозг. Личинка трансформируется в кисту, которая растет, раздвигая и сдавливая окружающие ткани. Симптоматика зависит от локализации кисты и степени сдавления органов.

Природная очаговость, особенность некоторых болезней, заключающаяся в том, что их возбудители, специфические переносчики и животные — резервуары возбудителя неограниченно долгое время существуют в природных условиях (очагах) вне зависимости от обитания человека. Человек заражается возбудителями болезней диких животных, попадая временно или проживая постоянно на территории природного очага. Характерная черта болезней с Природная очаговость — наличие природных резервуаров возбудителей среди диких животных (преимущественно грызунов) и птиц. Наиболее выражена Природная очаговость трансмиссивных болезней, при которых распространение инфекции происходит при посредстве кровососущих членистоногих (например, клещи, зараженные от больных животных, нападая на здоровых, передают им инфекцию); т. о. возбудитель заболевания циркулирует по цепи: животное — переносчик — животное

БИЛЕТ № 11

1. Ген — структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения.

Свойства гена

дискретность — несмешиваемость генов;

стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать;

множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

аллельность — в генотипе диплоидных организмов только две формы гена;

специфичность — каждый ген кодирует свой признак;

плейотропия — множественный эффект гена;

экспрессивность — степень выраженности гена в признаке;

пенетрантность — частота проявления гена в фенотипе;

амплификация — увеличение количества копий гена.

Триплетный код — генетический код, в кото­ром каждая аминокислота полипептидной цепи определяется группой из трех нуклео­тидов ДНК.

Внутриклеточная регуляция

Внутриклеточный уровень регуляции заключается в способности кардиомиоцитов при выполнении ими специфической сократительной функции синтезировать различные белки в соответствии с уровнем их разрушения. Синтез белков происходит дифференцированно благодаря существованию специальных ауторегуляторных механизмов. Процесс этот осуществляется кардиомиоцитами во взаимодействии с соединительно-тканными клетками.

Особенность кардиомиоцитов заключается в цикличности их обменных процессов, связанных с ритмом сердечной деятельности. Наиболее быстрый распад богатых энергией соединений — АТФ и гликогена — происходит в момент систолы и соответствует комплексу QRS электрокардиограммы. Ресинтез и восстановление уровня этих веществ успевает полностью осуществиться за время диастолы. Поэтому в чрезвычайных условиях при усиленной работе сердца одним из компенсаторных механизмов, адаптирующих деятельность сердца к воздействиям, является удлинение фазы диастолы.

2. ПРИРОДНАЯ ОЧАГОВОСТЬ болезней - особенность нек-рых заразных болезней, заключающаяся в том, что возбудители этих болезней паразитируют в организме диких животных, обитающих в природе в определенных климатогеографических условиях в пределах так наз. природных очагов вне связи с людьми или домашними животными.  Основоположником учения о природной очаговости болезней человека является академик Е. Н. Павловский. Оно получило мировую известность и признание. В Советском Союзе многочисленными учениками и последователями Е. Н. Павловского изучено и подтверждено существование природной очаговости многих заразных болезней человека.  Заразные болезни, к-рым свойственна П. о., принято называть природно-очаговыми, а территории, где обитают позвоночные животные и членистоногие - переносчики трансмиссивных болезней, в организме к-рых паразитируют возбудители этих болезней, - природными очагами.  Существование природных очагов болезней обусловлено непрерывной циркуляцией их возбудителей среди позвоночных животных - чаще грызунов, птиц, а также копытных, хищников и др. (источники возбудителей инфекции). Передача возбудителей от животного к животному, а также от животного человеку происходит преимущественно через насекомых и клещей (переносчиков возбудителей), однако возможны и другие пути и факторы передачи возбудителей, напр. через воду, пищу, контактным путем и др.  Люди или домашние животные могут заразиться природно-очаговыми болезнями, попадая на территорию природного очага. Заражение людей возможно и от заразившихся природно-очаговой болезнью домашних животных.  К природно-очаговым болезням людей относят следующие трансмиссивные заразные болезни: денге, желтую лихорадку, комариные энцефалиты, энцефалит Сент-Луис (см. Энцефалит), энцефаломиелиты лошадей (переносчики комары), чуму (переносчики блохи), висцеральный и кожный лейшманиоз, Флеботомную лихорадку (переносчики москиты), сонную болезнь, переносчиками к-рой являются мухи цеце (см. Трипаносомозы), болезнь Шагаса (переносчики поцелуйные клопы), клещевой энцефалит, многие клещевые риккетсиозы, геморрагические лихорадки, туляремию (переносчики иксодовые клещи), клещевой возвратный тиф (переносчики аргасовые клещи), лихорадку цуцугамуши (переносчики краснотелковые клещи). 

3.Анофелес яйца откладывают вразброс.имеются плавательные камеры личинка имеет на предпоследнем сегменте 2 дыхательных отверствия куколка сифон конической формы.имаго -посадка под углом к поверхности самка щупики длинной с хоботок усики опущены слабо самец щупики длиной с хоботок с булавовидным уплощением усики сильно опущены.

БИЛЕТ № 12

Клетки – это структурные единицы организмов. Впервые этот термин употребил Роберт Гук в 1665 году. К XIX веку усилиями многих учёных (особенно Маттиаса Шлейденаи Теодора Шванна) сложилась клеточная теория. Её основными положениями были следующие утверждения:

-клетка – основная единица строения и развития всех живых организмов;

-клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;  (Это положение теории подразумевает, что такая гомология клеток определяется общностью их происхождения. Конечно, прокариотические клетки устроены проще, чем эукариотические, но те и другие имеют в принципе очень сходные пути обмена веществ, сходные основные структурные части (мембраны, рибосомы, сократимые нити и др.). Поэтому есть все основания считать, что эукариотические клетки произошли от общих предков с прокариотическими. Клетки эукариотических многоклеточных организмов необычайно разнообразны как по форме, так и по внутренней организации.)

-каждая новая клетка образуется в результате деления исходной (материнской) клетки;

-в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.

Прокариоты — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, уцианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариоты— организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сетьаппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточныесимбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Эволюция биосферы

Биосфера не является статичным, неизменным объектом; с течением времени она эволюционирует. Важным фактором этой эволюции являются сами живые организмы. В результате их деятельности за миллиарды лет появились горные породы и полезные ископаемые органического происхождения, полностью преобразована атмосфера Земли. Значительные изменения биосфера претерпела с момента появления человека. Деятельность человечества, ничтожного по своей биомассе, оказывает влияние на состав земных океанов и атмосферы. Сейчас уже можно сказать, что человек, овладев громадной энергией, сам является мощнейшим фактором эволюции биосферы. Владимир Вернадский предполагал, что человечество должно создать новую оболочку Земли – ноосферу (греч. noos - «разум»), рассматриваемую в качестве некого мыслящего пласта над биосферой. Серьёзной проблемой являются глобальные климатические изменения в биосфере. Некоторые химические вещества (например, фреон), выбрасываемые в атмосферу, приводят к разрушению озонового слоя. В настоящее время над Антарктидой и некоторыми арктическими регионами постоянно существуют зоны, в которых озоновый слой либо значительно тоньше нормы, либо отсутствует вообще. В настоящее время во всём мире возникла необходимость наладить разумное использование природных ресурсов. Нужна охрана атмосферы, водных ресурсов, почвы, живой природы.

Правило экологической пирамиды - закономерность, согласно которой количество растительного вещества, служащего основой цепи питания, примерно в 10 раз больше, чем масса растительноядных животных, и каждый последующий пищевой уровень также имеет массу, в 10 раз меньшую.

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель».  основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные, потом хищники (консументы 1-го порядка), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

Формы паразитизма и связанные с этим взаимные адаптации паразитов и их хозяев чрезвычайно многообразны. Различают эктопаразитизм, при котором паразит обитает на хозяине и связан с его покровами (клещиблохивши и др.), и эндопаразитизм, при котором паразит живет в теле хозяина (паразитические черви, простейшие и др.) По степени тесноты связей паразита и хозяина выделяют две формы паразитизма:облигатный и факультативный. В первом случае вид ведет только паразитический образ жизни и не выживает без связи с хозяином (паразитические черви, вши). Факультативные паразиты, как правило, ведут свободный образ жизни и лишь при особых условиях переходят к паразитическому состоянию. По продолжительности связей с хозяином существуют постоянные и временные паразиты

БИЛЕТ № 13

Кроссинго́вер (другое название в биологии перекрёст) — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.

Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания и выражается в процентах. Рекомбинация происходит реципрокно, т. е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера измеряется в процентах.

Величина перекреста хромосом отражает силу сцепления генов в хромосоме: чем она больше, тем меньше сила сцепления.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Основные задачи Медико-генетической консультации:

- уточнение диагноза наследственной патологии

- профилактика наследственной патологии наследственных заболеваний и врожденных пороков развития, проведение периконцепционной профилактики врожденных пороков развития и наследственных заболеваний.

Общая характеристика типа

Членистоногие —самый многочисленный (более I млн. видов) тип царства Животные, далекими предками которого были кольчатые черви. 

Тело сегментировано и дифференцировано на три отдела: голову, грудь и брюшко. Покровы тела —многослойная хитинизированная кутикула, выполняющая защитную функцию. Членистые конечности подвижно соединены с телом и представляют собой многочленные рычаги, способные к сложным движениям. Полость тела смешанная. Кровеносная система незамкнутая. Сердце представляет собой расположенную на спинной стороне тела трубку, разделенную перегородками на несколько камер, которые сокращаются последовательно друг за другом, перекачивая гемолимфу. Органами дыхания являются жабры, а у наземных —легочные мешки и трахеи. Органы выделения — видоизмененные метанефридии («зеленая» железа раков), у наземных —мальпигиевы сосуды. Нервная система построена по типу брюшной нервной цепочки кольчатых червей. 

Жабродышащие (лат. Branchiata) — подтип Членистоногих (Arthropoda), преимущественно водные животные, дыхание которых осуществляется при помощи жабр (как правило, это плоские выросты конечностей (эпиподиты) или видоизменённые конечности), реже всей поверхностью тела.

Тело жабродышащих подразделено на головной, грудной и брюшной отделы. Головной отдел состоит из акрона и шести сегментов. На голове две парыусиков (отсюда 2-е назв. - Диантеннаты[1]): антеннулы — придатки акрона и антенны — видоизмененные конечности первого головного сегмента, а также три пары челюстей. Сегментация грудного и брюшного отделов сильно варьирует. Конечности двуветвистые, кроме первой пары антенн. К подтипу относится лишь один класс — Ракообразные (Crustacea).

Хелицеровые (лат. Chelicerata) — подтип членистоногих (Arthropoda). Хотя группа возникла в водной среде, наибольшего видового богатства достигли более поздние сухопутные представители — паукообразные. В настоящее время из первичноводных хелицеровых сохранились мечехвосты (4 вида) и морские пауки (около 1000 видов). Вторично перешли к водному образу жизни некоторые клещи́ ипауки. Практически все представители — хищники. Многие клещи и морские пауки на некоторых стадиях жизненного цикла ведутпаразитический образ жизни. Описано около 100 тысяч современных видов, большинство которых составляют пауки и клещи. К хелицеровым также относят ракоскорпионов.

Трахейнодышащие, или трахе́йные (лат. Tracheata) — подтип членистоногих, приспособленных к жизни на суше (или вторичноводных), имеющих органы дыхания, образованные системой трахей. Появление специализированных органов дыхания было связано с формированием непроницаемых покровов, развитие которых стимулировалось наземным образом жизни. Совершенствование системы дыхательных органов, в свою очередь способствовало упрочнению покровов этих животных.

БИЛЕТ № 14

Клеточный цикл  — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления. Клеточный цикл эукариот состоит из двух периодов: Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки. Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).

Интерфаза состоит из нескольких периодов:

G1-фазы (от англ. gap — промежуток), или фазы начального роста, во время которой идет синтез мРНКбелков, других клеточных компонентов; S-фазы (от англ. synthesis — синтез), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть). G2-фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Период клеточного деления (фаза М) включает две стадии:кариокинез (деление клеточного ядра);

цитокинез (деление цитоплазмы).

В митотическом цикле различают четыре периода (рис. 4.13):

G1 — посшитотический (или пресинтетический),

S — синтетический,

G2 — премитотический (или постсинтетический),

М — митоз.

Хромосомы — структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре. Строение хромосомы лучше всего видно в метафазе митоза. Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки.

Генетическая информация в ядре находится в 2ух состояниях:  Эухроматин - неконденсированный хроматин, с которого происходит синтез белка.  Гетерохроматин - конденсированный хроматин, с которого белок не синтезируется. 

Онтогенез – это индивидуальное развитие организма (особи) с момента его зарождения до прекращения существования. У высших многоклеточных организмов онтогенез обычно делят на два периода – эмбриональное развитие и постэмбриональное развитие. Эмбриональный период онтогенеза многоклеточных животных включает следующие стадии: зиготы, ее дробления, образования бластулы (однослойного зародыша), гаструлы (двухслойного зародыша) и нейрулы (трехслойного зародыша). Зигота представляет собой оплодотворенную яйцеклетку (яйцо). Оплодотворение представляет собой процесс слияния сперматозоида с яйцеклеткой. Вскоре после образования зиготы начинается ее дробление. Дробление – это ряд митотических делений яйца, в ходе которых оно, не увеличиваясь в размерах, разделяется на всё более мелкие клетки – бластомеры. Поздние фазы дробления (бластуляция) завершаются образованием бластулы – однослойного зародыша. Затем в ходе гаструляции бластула превращается в двуслойный зародыш – гаструлу. В простейшем случае гаструла представляет собой полый шар, стенки которого образованы двумя слоями клеток. Наружный слой клеток называется эктодерма, а внутренний – энтодерма. В ходе нейруляции гаструла превращается в трехслойный зародыш, который у хордовых называется нейрула. Сущность нейруляции заключается в образовании мезодермы – третьего зародышевого листка. Эмбриональное развитие завершается выходом организма из яйца или его рождением. Постэмбриональный период продолжается от перехода организмов к существованию вне яйца или зародышевых оболочек до полового созревания. В постэмбриональном периоде завершаются процессы органогенеза, роста и дифференцировки.

каждый ген контролирует синтез одного фермента. Однако принцип экономии требует, чтобы в клетке синтезировались только те ферменты, которые необходимы в данных обстоятельствах. Такой организм не будет расходовать вещество и энергию на ненужные синтезы, имея потенциальный резерв генов, которые в случае нужды он может снова использовать. Поэтому гены, кодирующие синтез ненужных на данной стадии развития ферментов, инактивированы (избирательно блокированы). Общепризнанным является тот факт, что разные участки цитоплазмы зиготы, влияют на активацию и инактивацию генов ядер этих бластомеров. Следовательно, различия участков цитоплазмы ранних бластомеров, как следствие явления ооплазмати-ческой сегрегации, могут обеспечивать активацию-инактивацию различных однотипных клеточных ядер.

Послезародышевое развитие включает только три фазы - личинку, единственную нимфу и взрослую фазу. Чесоточный зудень[1] (лат. Sarcoptes scabiei) — внутрикожный паразит, вызывающий чесотку у человека и многих других млекопитающих. Болезнь Лайма — самая распространённая болезнь, передаваемая клещами в Северном полушарии. Бактерии передаются человеку через укус инфицированных иксодовых клещей, принадлежащих к нескольким видам рода Ixodes.[2] Ранние проявления болезни могут включать жар, головные боли, усталость и характерную кожную сыпь. Клещевой энцефалит — природно-очаговая вирусная инфекция, характеризующаяся лихорадкойинтоксикацией и поражением серого вещества головного и/или оболочек головного и спинного мозга. от иксодовых клещей и диких позвоночных животных.

Билет 15.

Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Фенотип является результатом взаимодействия генотипа и среды.  Для реакции организма с определенным генотипом на воздействие фактора внешней среды характерен определенный диапазон разнообразия фенотипов, который называется нормой реакции (размер растения, вес человека и т.д.). Гомеостаз – генетически детерминированная способность организмов сохранять свой статус в изменяющихся условиях внешней среды.  

Некоторые характеристики фенотипа напрямую определяются генотипом, например цвет глаз. Другие сильно зависят от взаимодействия организма с окружающей средой — например однояйцевые близнецы могут различаться по росту, весу и другим основным физическим характеристикам, несмотря на то, что несут одни и те же гены.

Ведущая роль в формировании фенотипа — наследственная информация, заключенная в генотипе. Наряду с этим результат наследственной программы (в генотипе) зависит от условий, в которых осуществляется этот процесс. В случае гетерозиготности развитие данного признака будет зависеть от взаимодействия аллельных генов. Доминирование — это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого (А’). Этот аллель доминантный, второй рецессивный (пример: группа крови). Неполное доминирование — фенотип гетерозигот ВВ’ отличается от фенотипа гомозигот по обеим аллелям (ВВ, В’В’) промежуточным проявлением признака. Это происходит, т.к. аллель, способная сформировать нормальный признак находится у гетерозигот в двойной дозе ВВ, а у гомозигот ВВ’. Генотипы отличаются экспрессивностью (степень выраженности признака). Пример: заболевания у человека, проявляющиеся клинически у гетерозигот, а у гомозигот заканчивающиеся смертью. Кодоминирование — каждый из аллелей проявляет свое действие, в результате — промежуточный вариант признака (Группа крови, аллели которые по отдельности формируют 2 и 3 группы крови, вместе образуют 4). Аллельное исключение — вид взаимодействия аллельных генов в генотипе. Например, инактивация одного из аллелей в сосотаве Х-хромосомы способствует тому, что разных клетках организма, мозаичных по функционирующей хромосоме, фенотипически проявляются разные аллели. 

Энергообразующие системы клетки и их характеристики.

В зависимости от интенсивности и длительности физической активности, а также от уровня фитнес подготовки, наше тело пользуется тремя энергетическими системами: моментальной, краткосрочной и долговременной.

Моментальная энергия: компонентами этой системы являютсяаденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ). Все процессы, происходящие в организме, как-то: сокращение мышц, передача нервных импульсов, кровообращение, синтез тканей, пищеварение, секреция желез – происходят именно за счет АТФ.

Запасы АТФ в организме невелики: их количество рассчитано всего лишь на несколько секунд работы мышц при максимальной нагрузке. Поэтому процессы синтеза АТФ в организме идут беспрерывно.

Краткосрочная энергия: анаэробная система. Эта энергетическая система ресинтезирует АТФ путём расщепления сахара крови (глюкозы) и гликогена, запасённого в печени и мышцах. Для этого не требуется кислород, поэтому другое название системы – анаэробная, то есть безкислородная. Возможности этой энергетической системы также ограничены, но она может производить достаточное количество АТФ в короткий период времени.

Долговременная энергия: аэробная система. Другое название для аэробной системы – окислительная система. Оно отражает то, что для генерирования АТФ окислительная система нуждается в кислороде. И хотя аэробная система не может производить энергию также быстро, как моментальная и анаэробная, зато она может обеспечивать её в течение длительного времени. Для того, чтобы аэробная энергетическая система работала, кислород должен быть доставлен из воздуха к клеткам.

Когда кислород достигает клеток, он попадает в специальные клеточные структуры – митохондрии. Митохондрии производят большинство адезинтрифосфорной кислоты (АТФ). Они содержат ферменты, которые запускают химические реакции для извлечения энергии из продуктов, которую мы едим. Эта энергия обеспечивает мышечные сокращения, создание новых белков и работает в тысячах других клеточных функций.

Дифиллоботриоз – краевая патология Тюменской области.

Группа: Vermes

Тип: Platodes

Класс: Cestoidea

Отряд: Pseudophyllidea

Вид: Diphyllobothrium latum

Диагностические признаки: длина 7-10 м. сколекс лишен присосок. Прикрепляется к стенкам кишок при помощи 2 присасывательных бороздок – ботрий. Проглотиды в ширину больше, чем в длину. Матка имеет форму в виде петель, образующих розетку. Отверстие матки расположено у переднего края проглотиды. Яйца овальные, желтовато-коричневого цвета. Имеется крышечка.

Жизненный цикл: смена 2 промежуточных хозяев. Основные хозяева – человек и плотоядные млекопитающие. Первый промежуточный хозяин – циклоп, второй - рыба. Яйца должны попасть в воду, в воде из яйца освобождается свободно плавающая личинка – корацидий, снабженная 3 парами крючьев. Для дальнейшего развития корацидий должен быть проглочен 1 промежуточным хозяином. В кишках рачка корацидий теряет реснички и в виде онкосферы проникает в полость тела. Здесь он превращается в процеркоид. Если рачка проглатывает рыба, то в ее мускулатуре процеркоид превращается в плероцеркоид. Таким образом инвазионной стадией для человека является плероцеркоид.

Патогенное значение: ботриями лентец защемляет слизистую оболочку кишки, что приводит к омертвлению тканей. Клубки из стробил нескольких гельминтов могут повлечь за собой кишечную непроходимость. Вызывает общую слабость и истощение.

Билет 16

Хромосомная теория наследственности. Основные положения:

1. Гены находятся в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления равно гаплоидному набору хромосом.

2. Каждый ген в хромосоме занимает определенное место – локус. Гены в хромосомах расположены линейно.

3. Расстояние между генами в хромосоме прямопропорционально проценту кроссинговера между ними.

Сцепленное с полом наследование. Анализ наследования признака окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдельного типа наследования признаков сцепленное с полом наследование. Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предложение , что ген определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в Y-хромосоме. Все особенности сцепленного с полом наследования объясняются дозой соответствующих генов у представителя разного – гомо- и гетерогаметного пола.

Гомогаметный пол несет двойную дозу генов, расположенных в Х-хромосоме. Развитие соответствующих признаков у гетерозигот (ХАХа) зависит от характера взаимодействия между аллельными генами. Гетерогаметный пол имеет одну Х-хромосому (Х0 или XY). У некоторых видов Y-хромосома генетически инертна, у других она содержит некоторое количество структурных генов, часть из которых гомологична генам Х-хромосомы. Гены негомологичных участков Х- и Y-хромосом ( или единственной Х-хромосомы) у гетерогаметного пола находятся в гемизиготном состоянии. Они представлены единственной дозой: ХАY, XaY, XYB. Формирование таких признаков у гетерогаметного пола определяется тем, какой аллель данного гена присутствует в генотипе организма.

Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

Кариотип – диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецефическим признаком и характеризующийся определённым числом и строением хромосом. Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где число п различно для разных видов.

Идиограмма - это графическое изображение гаплоидного набора хромосом (можно и диплоидного) и расположение их по группам в зависимости от формы и величины. Группы располагаются в порядке уменьшения величины входящих в них хромосом. (Помните составляли размеры хромосом, дак вот это и есть. СПС КЭП)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]