Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОЛОГИЯ.docx
Скачиваний:
12
Добавлен:
25.09.2019
Размер:
377.63 Кб
Скачать

Билет № 37

  1. Предмет, задачи, методы генетики. Этапы развития генетики.

  2. Органический мир как результат процесса эволюции. Возникновение и развитие жизни на Земле. Химический, предбиологический и социальный этапы. Фотопериодизм и суточные биоритмы.

  3. Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные и основные хозяева на примере ланцетовидной двуустки.

Билет 37. ф

1 Генетика–наука, изучающая наследственность и изменчивость, а также закономерности передачи наследственных признаков от поколения к поколению.

Наследственность – это способность организмов сохранять и передавать особенности своего строения, функции и развития своему потомству.

- это свойство организмов, обеспечить материальную и функциональную преемственность в ряду поколений, а также характер индивидуального развития при постоянно меняющихся условиях среды.

Генотип - совокупность всех генов одного организма. Известный советский генетик М.Е.Лобашев определил генотип как систему взаимодействующих генов – совокупность всех признаков организма.

Родоначальником генетики считают австрийского ученого- монаха Грегора Менделя. Применил гибридологический метод, результатом проведенных исследований явилось открытие закономерностей наследования.

Томас Морган исследовал дигибридное скрещивание для двух признаков.

Методы исследования: гибридологический анализ – система скрещиваний, которая позволяет проследить в ряду поколений закономерности наследования и изменения признаков.

Цитологический, близнецовый, онтогенетический (проявление действия генов в онтогенезе) и другие. Широко применяются математическая статистика и анализ.

Н.И.Вавилов (1887-1943 гг.) изучая мутации у родственных видов, установил закон гомологичных рядов в наследственной изменчивости. Этот закон позволяет предсказать наличие определенного признака у разных родов одного семейства, если его другие роды имеют данный признак.

Изучение наследственных заболеваний у человека свидетельствуют о том, что нередко сходное фенотипическое проявление болезни бывает, обусловлено несколькими различными мутациями. Это явление впервые было описано в 30-х гг. С.Н.Давиденковым и названо генетической гетерогенностью наследственных заболеваний.

Современная генетика включает в себя несколько дисциплин:

Цитогенетика занимается изучением материальных основ наследственности.

Онтогенетика исследует действие генов и их проявления в ходе индивидуального развития организма.

Биохимическая генетика концентрирует свое внимание на механизмах передачи различных типов метаболических процессов в ряду поколений. Ее частью является иммуногенетика, которая изучает наследственную обусловленность иммунных свойств тканей и органов.

Медицинская генетика занимается проблемами, как ранняя диагностика наследственных заболеваний, методы предупреждения их развития и т.п.

Селекция связана с выведением новых пород животных и сортов растений с нужными человеку свойствами.

2 Органический мир как результат процесса эволюции.

Проблема возникновения жизни на Земле является одной из основных проблем естествознания. Одновременно это важная философская, мировоззренческая проблема, которая тесно связана с пониманием самой сути жизни. Своей актуальностью она привлекает ученых разных специальностей и вызывает интерес у многих людей независимо от рода их деятельности. Существуют различные гипотезы возникновение жизни на Земле, и все они так или иной степени носят дискуссионный характер, так как воспроизвести все процессы, которые привели к возникновению жизни, невозможно. Среди этих гипотез можно назвать такие:

а) жизнь была создана в определенное время актом божественного творения (креационизм),

б) жизнь никогда не возникало, оно существует вечно,

в) жизни возникала неоднократно с неживой природы (самовольное зарождение);

г) жизнь занесена на Землю из космоса (панспермия);

д) жизнь возникла из неживой природы в результате закономерных процессов (химическая эволюция).

Основу большинства современных гипотез происхождения жизнь на Земле составляет гипотеза биохимика академика А. И. Опарина (1894-1980), с которой он впервые выступил в книге "Происхождение жизни" (1924). А. Опарин исходил из того, что на ранней стадии своего развития Земля была лишена жизни, но на ней осуществлялись абиотические (неорганические) синтезы соединений углерода (Органических веществ) и их последующая химическая эволюция. Возникновение жизни А. И. Опарин связывал с образованием белка . Основные этапы возникновение жизни на Земле, по А. И. Опариным, такие:

а) первый этап - абиогенный (небиологических, неорганический) синтез простых органических соединений,

б) второй этап - абиогенный синтез сложных органических соединений (полимеров):

в) третий этап - образование индивидуальных фазоотдельных предбиологической систем - предшественников жизни (пробионты) г) появление первых живых организмов.

Фотопериодизм — реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами).

Термин «фотопериодизм» предложили в 1920 году американские учёные селекционеры У. Гарнер и Г. Аллард, которые открыли данную реакцию у растений. Оказалось, что многие растения очень чувствительны к изменению длины дня.

Биологи́ческие ри́тмы — (биоритмы) периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам — суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открывание и закрывание раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)

Выделены три уровня  структур хозяев в жизненном цикле гельминтов: 1. Первичная структура хозяев. Генетически детерминированный круг хозяев, в которых происходят подготовительные морфо-физиологические стадийные процессы развития и достижение взрослого половозрелого состояния гельминтов. 2. Вторичная структура хозяев. Факультативные хозяева в которых также происходит полный или частичный морфогенез и достижение половой зрелости, но они не являются обязательными хозяевами и их заражение данным гельминтом носит случайный характер. Это обычно близкородственные виды по отношению к хозяевам первичной структуры. 3. Третичная структура хозяев. Экологически обусловленный круг дополнительных хозяев неполовозрелых гельминтов. С точки зрения прохождения морфо-генетических процессов онтогенетического развития гельминтов они не обязательны, но экологически в той или иной степени способствуют реализации их жизненных циклов. Среди этих паратенических (транспортных) хозяев выделяются хозяева без накопления и со значительным накоплением личинок гельминтов. 4. Четвертичная структура хозяев. Экологически детерминированные тупиковые хозяева. Паразиты присутствуют у этих хозяев, но они не участвуют в реализации жизненном цикле популяции гельминта. Выделяются хозяева-тупики и хозяева-убийцы. Хозяева 1, 2 и 3 уровней – циклогенные, а 4-го – ациклогенные. Формирование третичной и четвертичной структур хозяев в жизненных циклах гельминтов и степень их сложности определяются сложностью трофических сетей, которые используют эти паразиты. Эти хозяева являются “экспериментальным материалом” для эволюции жизненных циклов гельминтов. Применение этого подхода может быть действенным только тогда, когда паразитологические исследования будут проводиться в общем контексте синэкологического изучения конкретных сообществ. 

 Ланцетовидная двуустка, или Ланцетовидный сосальщик (лат. Dicrocoelium dendriticum) — вид паразитических плоских червей трематод рода Dicrocoelium из семейства Dicrocoeliidae отряда Tylenchida [1].

Описание

Цикл развития Dicrocoelium dendriticum

Имеют размер 0,5—1,2 см. В своём жизненном цикле проходят промежуточную стадию развития на наземных улитках (Zebrina, Fruticicola и др.) и муравьях рода формика (Длусский, 1967). В печени улитки развиваются спороцисты и дочерние спороцисты, рождающие церкарий. Вторыми промежуточными хозяевами являются бурые лесные муравьи (Formica fusca), краснощекие муравьи (Formica rufibarbis), луговые муравьи (Formica pratensis) и другие виды [1], которые поедают выделяемые улитками через дыхательное отверстие комочки слизи вместе с церкариями (расселительные личинки). Большинство проглоченных муравьем церкарий проникают через стенку зоба в полость тела и там, утратив хвост, инцистируются, превращаясь в метацеркарий. Однако одна церкария проникает в подглоточный ганглий муравья. Там она образует особую тонкостенную цисту, не способную к дальнейшему развитию в окончательном хозяине. В результате меняется поведение муравья. Днем муравьи ведут себя нормально, но ночью не возвращаются в муравейник, забираясь высоко на стебли трав и прочно удерживаясь за травинку мандибулами. Овцы и другие копытные животные (крупный рогатый скот, козы, свиньи, лошади, ослы; а также, верблюды, зайцы, медведи, собаки, лисы)[2], поедая траву вместе с заражённых муравьями, становятся окончательными хозяевами. Попавшие с их экскрементами на почву яйца двуустки поедают моллюски, замыкая цикл развития.

Двуустка поражает, главным образом, печень и желчные протоки копытных и других млекопитающих, вызывая у них дикроцелиоз[3][4][5].

33 билет

1 )Проект по расшифровке генома человека— международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20-25 тыс. генов в человеческом геноме

Цели: исследование этических, правовых и социальных последствий расшифровки генома. Важно исследовать эти вопросы и найти наиболее подходящие решения до того, как они станут почвой для разногласий и политических проблем.

хранят геномные последовательности в базе данных

идентификации границ генов

Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека. Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, мобилизировали выпуск химических веществ для быта.

Методы генной инженерии:

- метод секвенирования — определение нуклеотидной последовательности ДНК;

- метод обратной транскрипции ДНК;

- размножение отдельных фрагментов ДНК.

2) Фотопериодизм— реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами). Реакция на длину светового дня регулирует начало брачного периода, линьки, зимней спячки и т. Д

3)аут-экологические законы:2 пути адаптации к воздействию ОС-пассивный по типу толерантности-виды конформисты,активный по типу сопротивления-виды регуляторы

ЗАКОН МИНИМУМА

(ЛИБИХА) успешную жизнедеятельность организма ограничивает экологический фактор, количество и качество которого близки к минимуму, необходимому организму. Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение. Правило Бергмана Животные, обитающие в областях с преобладающими низкими температурами, имеют, как правило, более крупные размеры тела по сравнению с обитателями более теплых зон и областей. правило Аллена Животные, обитающие в областях с преобладающими низкими температурами, имеют, как правило, более короткие выступающие части тела (уши, лапы, хвост, нос) по сравнению с обитателями более теплых зон и областей.

34 билет

1 Изменчивость общее свойство организмов изменять наследственные факторы и приобретать новые под действием мутаций, рекомбинации этих факторов, также проявляют вариабельность признаков под модификационным влияние окружающей среды.

Наследственная изменчивость(генотипическая):

  1. Комбинативная. Не происходит изменения числа и структуры хромосом. 3 источника: кроссинговер, независимое расхождение хромосом в анафазе 1 мейоза, случайное слияние гамет при половом размножении.

  2. Мутационная. Мутации – генотипические изменения на уровне ДНК, возникающие на разных уровнях организации наследственного материала. (генные, хромосомные, геномные).

Индуцированные мутации – вызваны специально направленными воздействиями, повышающими мутационный процесс.

Спонтанные мутации – возникают под влияние неизвестных природных факторов, чаще всего как результат ошибок при репликации ДНК.

Генные мутации – тонкие структурные изменения ДНК на уровне отдельных генов. (наследственная гиперхолестеринемия, муковисцидоз, серповидно-клеточная анемия, болезнь Вильсона-Коновалова, фенилкетонурия).

Хромосомные абберации возникают в результате перестройки хромосом:

  1. Нехватки(исерция) возникают вследствие утери хромосомой того или иного участка.

  2. Дупликации (удвоение) связано с включением лишнего дублирующего участка хромосомы.

  3. Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180⁰.

  4. Транслокации возникают, когда участок хромосомы из одной пары прикрепляется к участку хромосомы из другой пары.

Геномные мутации связаны с изменением числа хромосом:

  1. Полиплоидия – кратное увеличение числа хромосом.

  2. Аллоплоидия – умножение хромосом двух разных геномов.

  3. Автоплоидия – умножение хромосом одного генома.

  4. Гетероплоидия – не кратное увеличение числа хромосом.

Ненаследственная изменчивость(фенотипическая):

  1. Модификационная. Модификации – фенотипические особенности, возникающие под действием внешних факторов. ГЕНОТИП + СРЕДА = ФЕНОТИП.

  1. Гликолиз и тканевое дыхание. Сущность, биологическое значение. Энергообразующие системы клетки. Окислительное фосфорилирование. Роль.

А) Гликолиз – первый и самый древний этап диссимиляции (анаэробный).

- возник ранее, чем растительный мир занял свою эволюционную нишу.

- самый надежный механизм извлечения энергии.

- но менее эффективный энергетический механизм.

- в ходе гликолиза клетка может запасти только 2 молекулы АТФ.

-в анаэробных условиях пируват переходит в лактат.

Тканевое дыхание – самый эффективный и сложный из этапов диссимиляции (протекает в митохондриях).

- аэробный процесс.

- появился на более поздних этапах, после возникновения растений.

- самый эффективный энергетический механизм, но зависящий от присутствия кислорода.- в ходе тканевого дыхания клетка способна запасти 36 молекул АТФ.

Энергообразующая система клетки.

-Состоит из лизосом и митохондрий.

-Служит основным источником энергии клетки в виде АТФ.

-В ней происходят процессы диссимиляции(гликоли и тканевое дыхание).

Сопряженный с окислением процесс образования АТФ – окислительное фосфорилирование.

- в ходе этого окисления часть энергии переходит в энергию макроэргических связей.

3 Определение старения. Периодизация жизни человека. Биология продолжительности жизни. Теории старения (авторы, суть теорий).

Старение – процесс закономерного возникновения возрастных изменений, которые начинаются задолго до старости и постепенно приводят к сокращению приспособительных функциональных возможностей организма.

Теории старения:

  1. И.И. Мечников. Старение – интоксикация шлаками. Начинается с ЖКТ. Ортобиоз. Пропаганда кисломолочных продуктов.

  2. И.П. Павлов. Благотворная роль полноценного сна и отдыха ЦНС (охранительное торможение) и пагубное влияние длительных стрессов.

  3. А.А. Богомолец. Старение – нарушение регулирующей функции соединительной ткани. Начинается с мезодермы. Роль «перекрестных сшивок» (утрата функции, потеря эластичности)

  4. И. Пригожин, Sacher, 1967, Bortz, 1986. Старение – уступка энтропии (термодинамическая теория).

  5. В.М. Дильман. Старость – болезнь и ее надлежит лечить (нервно-эндокринная или элевационная теория). Причина – возрастание порога чувствительности гипоталамуса к уровню гормонов в крови.

  6. В.В. Фролькис. Старость – борьба, а нормы нет (адаптационно-регуляторная теория, 1960). В ответ на старость запускается механизм антистарения «витаукт» «auctum» - увеличивать. Появляются новые белки.

  7. Л. Хейфлик (1961). Старение - генетическая программа и обусловлена лимитом клеточных делений (50+-10).

  8. А.М. Оловников (1971). В старении повинна линейная форма хромосом, а не кольцевая как у бактерий (клетка не способна делится бесконечно – теломеры не копируются при редупликации, кольцевая недорепликация).

Генетические теории старения: во всем виноваты гены старения, запускающие этот комплексный механизм. Открыты гены, изменения которых существенно продлевают жизнь.

Мутационные теории: теория ошибок(Szillard, 1959), свободно-радикальная теория(Harman, 1956). Старение – накопление ошибок и результат действия радикалов (АФК), повреждения ДНК и РНК(Л.Поллинк о пользе антиоксидантов), теория апоптоза(В.П. Скулачев).

Энергетическая (митохондриальная) и синтетические теории: старение – прогрессирующий дефицит энергии (вследствие накоплений повреждений ДНК митохондрий из-за совокупности всех причин.

Периодизация постнатального онтогенеза

Новорожденный 1-10 дней

  1. Грудной 10 дней-1 год

  2. Раннее детство 1-3 года

  3. Первое детство 4-7 лет

  4. Второе детство 8-12 лет (м), 8-11 лет (ж)

  5. Подростковый 13-16 лет (м), 12-15 лет (ж)

  6. Юношеский 17-21 лет (м), 16-20 лет (ж)

  7. Первый зрелый 22-35 лет (м), 21-35 лет (ж)

  8. Второй зрелый 36-60 лет (м), 36-55 (ж)

  9. Пожилой 61-74 лет (м), 56-74 (ж)

  10. Старческий 75-90лет

  11. Долгожители 90 и более лет

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]