Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по математике.docx
Скачиваний:
13
Добавлен:
23.09.2019
Размер:
168.05 Кб
Скачать

1-Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится рассматриваемаяфункция при стремлении её аргумента к данной точке.

Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю.

Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

2-Теоремы о пределах

  1. Бесконечно большие и бесконечно малые.

Функция f(x) стремится к бесконечности при x стремящимся к a, если для любого M > 0 можно указать такое значение  > 0, что для всех x удовлетворяющих неравенству xa < имеет место неравенство f(x) > M.

limx a=

  1. Функция ограниченная при x a.

  2. Функция ограниченная при x .

  3. Теорема. Если limx a f(x)=b, то функция f(x) ограниченная при x a.

  4. Бесконечно малые и их свойства. limx a (x)=0

Теорема. 1. Если f(x)=b+, где  - б.м. при x a, то limx a f(x)=b и обратно, если limx af(x)=b, то можно записать f(x)=b+(x).

Теорема. 2. Если limx a (x)=0 и (x)  0, то 1/ .

Теорема. 3. Сумма конечного числа б.м. есть б.м.

Теорема. 4. Произведение б.м. на ограниченную функцию есть б.м.

  1. Теоремы о пределах.

Теорема. 1. Предел суммы есть сумма пределов.

Теорема. 2. Предел произведения есть произведение пределов.

Теорема. 3. Предел частного есть частное пределов (если знаменатель не обращается в 0).

Теорема. 4. Если u(x)  z(x)  v(x), и limx a u(x)=limx a v(x)=b, то limx a z(x)=b. ("Теорема о двух милиционерах").

  1. Первый замечательный предел.

0.5sin(x) < 0.5x < 0.5tg(x)

lim x 0 

sin(x)

x

=1.

  1. Второй замечательный предел.

Переменная величина 

 

1+

1

n

 

n  

при n  имеет предел, заключенный между 2 и 3.

Алгоритм решения.

  1. Подставить в выражение предельное значение аргумента.

  2. Определить есть или нет неопределенность. Если нет, дать ответ.

  3. Если неопределенность есть, то по ее виду выбрать одно из правил устранения этой неопределенности.

  4. Преобразовать выражение согласно выбранному правилу, и к новой форме предела применить данный алгоритм, начиная с п.1.

3-Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке  f=f(x0+ x)−f(x0) к приращению аргумента  x  при  x 0: f (x0)=lim x 0 xf(x0+ x)−f(x0).

4-Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке)

1) Физический смысл производной.

Если  функция y = f(x) и ее аргумент x являются физическими величинами,  то производная   – скорость изменения переменной y относительно переменной x в точке .  Например, если S = S(t) – расстояние, проходимое точкой за время t,  то ее производная  – скорость в момент времени .  Если  q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени  t,  то   – скорость изменения количества электричества в момент времени , т.е. сила тока в момент времени .

5-Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке)

Формулы дифференцирования

C ' =0,

x ' =1,

6-Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если

f(x2) > f(x1) при x2 > x1.

Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если

f(x2) < f(x1) при x2 > x1.

Достаточный признак возрастания функцииЕсли f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I. Достаточный признак убывания функцииЕсли f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.

7- Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если

f(x2) > f(x1) при x2 > x1.

Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если

f(x2) < f(x1) при x2 > x1.

8- Полная схема исследования функции и построения ее графика

Общие исследование функции y = f(x). 

  • Область определения функции. Найти ее область определения D(f) . Если это не слишком сложно, то полезно найти также область значений E(f) . (Однако, во многих случаях, вопрос нахождения E(f) откладывается до нахождения экстремумов функции.)

  • Особые свойства функции. Выяснить общие свойства функции: четность, нечетность, периодичность и т.п. Не любая функция обладает такими свойствами, как четность либо нечетность. Функция заведомо не является ни четной, ни нечетной, если ее область определения несимметрична относительно точки 0 на оси Ox. Точно так же, у любой периодической функции область определения состоит либо из всей вещественной оси, либо из объединения периодически повторяющихся систем промежутков.

  • Вертикальные асимптоты. Выяснить, как ведёт себя функция при приближении аргумента  к граничным точкам области определения D(f), если такие граничные точки имеются. При этом могут обнаружиться вертикальные асимптоты. Если функция имеет такие точки разрыва, в которых она не определена, то эти точки тоже проверить на наличие вертикальных асимптот функции.

  • Наклонные и горизонтальные асимптоты. Если область определения D(f) вклоючает в себя лучи вида (a;+ )или (− ;b), то можно попытаться найти наклонные асимптоты (или горизонтальные асимптоты) при x + или x −  соответственно, т.е. найти limx f(x). Наклонные асимптотыy = kx + b, где k=limx + xf(x)и b=limx + (f(x)−x). Горизонтальны асимптотыy = b, где limx f(x)=b.

  • Нахождение точек пересечения графика с осями. Нахождение точки пересечения графика с осью Oy. Для этого нужно вычислить значение f(0). Найти также точки пересечения графика с осью Ox, для чего найти корни уравнения f(x) = 0 (или убедиться в отсутствии корней). Уравнение часто удается решить лишь приближунно, но уже отделение корней помогает лучше уяснить строение графика. Далее, нужно определить знак функции на промежутках между корнями и точками разрыва.

  • Нахождение точек пересечения графика с асимптотой. В некоторых случаях бывает нужно найти характерные точки графика, которые не были упомянуты в предыдущих пунктах. Например, если функция имеет наклонную асимптоту, то можно попытаться выяснить, нет ли точек пересечения графика с этой асимптотой.

Исследования с помощью производной (продолжение)

Интегральное исчесление:

9- Неопределённый интегра́л для функции   — это совокупность всех первообразных данной функции.

Если функция   определена и непрерывна на промежутке   и   — её первообразная, то есть   при  , то

  ,

где С — произвольная постоянная.

Свойства:

  1. постоянную можно выносить за знак интеграла.

  2. интеграл суммы равен сумме интегралов.

  3. производная от интеграла равна подынтегральной функции.

  4. интеграл от дифференциала функции равен этой функции плюс постоянная интегрирования.

Геометрический смысл определенного интеграла заключается в том, что определенный интеграл равен площади криволинейной трапеции, прилегающей к оси Ox и ограниченной кривой у=f(x)  и прямыми у=0; х=а; х=b.

10- Неопределённый интегра́л для функции   — это совокупность всех первообразных данной функции.

Если функция   определена и непрерывна на промежутке   и   — её первообразная, то есть   при  , то

  ,

где С — произвольная постоянная.

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.

11- Неопределённый интегра́л для функции   — это совокупность всех первообразных данной функции.

Если функция   определена и непрерывна на промежутке   и   — её первообразная, то есть   при  , то

  ,

где С — произвольная постоянная.